Выбираем компас для охоты: обзор разновидностей и лучших моделей. Автомобильный компас: как сделать электронный девайс для авто на Ардуино своими руками Разница между географическим и магнитным полюсом

Когда собираешься на охоту в незнакомую местность, где нет видимых ориентиров, надо обязательно взять с собой компас с картой района. Такая предосторожность нужна в степи и тундре, в горах. Не обойтись без компаса темной ночью, в туманный день и в пургу.

Какие бывают

Компас - это прибор, с помощью которого можно ориентироваться на незнакомой местности.

Компасы бывают:

  • магнитными;
  • жидкостными;
  • электронными.

Жидкостные

Самым точным среди всех магнитных считается жидкостный компас. В типичном простом варианте он выглядит в виде «казанка», наполненного водой, в котором на вертикальной оси закреплена картушка из алюминия или бронзы. По разным сторонам картушки имеются прикрепленные магниты.

В таких устройствах жидкость придает устойчивость стрелке, в устойчивом положении стрелка помогает точно определить показания.

Планшетные

Такой прибор представляется в виде планшета, в нем установлена круглая колба с намагниченной стрелкой. Оснащен планшетный компас увеличительным стеклом для удобства рассмотрения шкалы. Специальная жидкость в капсуле обеспечивает устойчивость стрелки во время быстрого передвижения.

Базовые модели

Предназначены для начинающих туристов, имеют все нужные компоненты, но нет у них зеркала и регулировки отклонений.

Многофункциональные

Они оснащены зеркалом, увеличительным стеклом и другими дополнительными свойствами. Подходят для регулярных походов в глубинке, вдали от маршрутов.

Магнитные

Есть несколько видов устройств, с которыми можно определять стороны света.

Механический

Он бывает обычным туристическим. Этот вид компаса имеет стрелку с красным концом, надетой на иглу, указывающей на север, где находится самое сильное магнитное поле. С простым магнитным прибором совместно с картой можно точнее установить место расположения разных объектов.

Для военных

Он отличается от обычного увеличительной линзой и визирным приспособлением. С таким прибором можно точнее определять направление пути в полевых условиях.

Геологический

В этом приборе деление шкалы направления расположены против часовой стрелки. Для определения углов падения слоев пород он оснащен клинометром и полулимбом.

Гигроскопический

Гигроскопический компас устанавливают на самолеты и на речные морские суда. Он оснащен гироскопом, благодаря такому устройству, показывает на истинный полюс, а не на магнитный полюс. Этот прибор обладает устойчивостью, поэтому во время раскачки точнее показывает направление.

Астрономический

Такой вид можно определить стороны света, ориентируясь на звезды и светила. Недостаток прибора в том, что с ним нельзя работать днем.

Для спортивного ориентирования

Какой компас выбрать спортсменам? Они должны уметь пользоваться магнитным компасом и разбираться в топографической карте.

Поэтомукомпас для спортивного ориентирования должен обладать высокими эксплуатационными характеристиками, такими, как:

  • скоростью и быстротой установки магнитной стрелки;
  • устойчивостью стрелки во время быстрого передвижения спортсменов;
  • удобством пользования, чтобы в руке прибор держался устойчиво;
  • маленьким размером и легкой массой.

Электронные компасы действуют на основе магнезированных датчиков, включаясь при поиске нужных координат в систему спутниковой навигации. Они предназначены только для профессионалов, используют их в основном военнослужащие и представители силовых структур.

В зависимости от места и цели используются такие виды электронных навигаторов.

Указывает направление на объект, излучающий радиоволны. Применяют его авиаторы для ориентирования в пространстве во время совершения полетов.

Он отличается от механического туристического тем, что в нем нет намагниченной стрелки. Компас определяет стороны света по электронным схемам. Он показывает время, встроены в нем разные дополнительные программы, даже видеофильмы.

GPS и ГЛОНАСС

Эти навигаторы работают с помощью электронной системы, сигналы для определения точного местоположения и направления они получают с нескольких спутников.

Приемники GPS считаются высококачественными навигаторами, почти всегда снабжаются электронным компасом. Но GPS-навигаторы не могут работать без аккумулятора, который в самый нужный момент может разрядиться. Следовательно, во время похода не обойтись без магнитного компаса или комплекта запасных батарей.

GPS приемники, в отличие от магнитных компасов, обладают таким преимуществом: могут оценить текущее местоположение без видимых ориентиров в снежные дни и в туманную погоду. С устройством GPS можно легко установить нужное направление при обходе какого-нибудь препятствия и заново настроить компас по изменённой линии маршрута.

Критерии выбора

Выбор компаса зависит от цели: покупают его для охоты, для туристических походов или спортивного ориентирования. Выбирать модель компаса рекомендуется с таким расчетом, чтобы ее можно было использовать в разных ситуациях: во время туристических походов и соревнований по ориентированию.

Какой компас лучше всего для пеших и вело- туристов?

При выборе надо взять на заметку некоторые нюансы:

  • Для туристических походов подходят классические модели компасов с градусным делением и с линейкой.
  • Туристы часто пользуются градусными вычислениями и расчётами по азимуту, поэтому линейка и градусный лимб на компасе им необходимы в условиях похода.
  • Для велосипедистов более приемлемый вариант - это GPS навигатор, хотя батарейки у него быстро садятся. Поэтому придется велотуристам взять с собой и классический компас.
  • Для путешествия по воздуху предпочтение надо отдавать электронным навигаторам, так как они многофункциональны, можно определить по ним и высоту, и давление.

Обзор лучших моделей

Хороший качественный инвентарь для туристов выпускают шведская компания Silva и финская компания Suunto.

Подходит для применения на любой местности, является классическим профессиональным прибором для спортивного ориентирования, оснащен системой Spectra, стрелка прибора прямая и широкая, удобная для быстроты считывания показаний.

Отличается такими особенностями:

  1. Сильным магнитом, стрелка прибора быстро успокаивается.
  2. Прозрачной базовой пластиной с четкой маркировкой
  3. Безопасностью размещения в руке.
  4. Модель Silva 6 Nor Spectra Right можно держать и в правой руке.

Наручная модель Suunto M-9 отличается удобством многофункциональностью.

Туристы выбирают его за маленькие размеры и легкий вес, а также точность определения направления. Наручный прибор можно использовать и под водой.

Хороший прибор американского производства считается самым надежным, пригодным для использования в полевых условиях.

Корпус из алюминия, обладает особой прочностью, водонепроницаемый. Прибор характеризует повышенная точность определения направления.

Как ориентироваться по компасу

Итак, что нужно сделать:

  1. Сначала надо определить ориентир, к которому следует возвратиться, к примеру, это может быть дерево.
  2. Ориентирование начинают с нажатия на специальный фиксатор и освобождения магнитной стрелки.
  3. Взяв прибор и поставив на ладонь горизонтально, надо подождать положения синей стрелки на 0 градусе шкалы, затем поворотом крышки установить ее с прорезью к себе, а мушкой к предмету.
  4. Выбрав направление движения, следует зафиксировать его и запомнить значение угла, называемого «азимутом».
  5. Постоянно сверяясь с направлением, надо начать движение.
  6. После того как дошли до конечной точки передвижения, следует повернуться вокруг своей оси. Это значит, что был сделан поворот вокруг своей оси на 180 градусов. Выходит, что совершили возвращение на начальную точку маршрута.

Туристы и путешественники, а также охотники в любой момент могут оказаться в незнакомых местах и потерять направление своего дальнейшего движения. В таких случаях с компасом можно быстро определить местоположение.

А вот перед тем как выбрать компас, надо изучить их виды, свойства, а также для кого и для каких целей они предназначены.

Видео

Как пользоваться компасом в лесу, вы узнаете из нашего видео.

Каждый, кто пробовал ставить на своего робота электронный компас задавался таким вопросом: а как, собственно, получить из этого прибора некую виртуальную стрелку, которая бы показывала на север? Если мы подключим к Ардуино самый популярный датчик HMC5883L, то получим поток чисел, которые ведут себя странным образом при его вращении. Что делать с этими данным? Попробуем разобраться, ведь полноценная навигация робота без компаса невозможна.
Во первых, устройство, которое часто называют компасом на самом деле является магнитометром. Магнитометр — это прибор, который измеряет напряженность магнитного поля. Все современные электронные магнитометры изготавливаются по технологии МЭМС и позволяют проводить измерения сразу по трем перпендикулярным осям. Так вот тот поток чисел, которые выдает прибор — это на самом деле проекции магнитного поля на три оси в системе координат магнитометра. Такой же формат данных имеют и другие устройства, используемые для позиционирования и навигации: акселерометр и гиротахометр (он же гироскоп). На рисунке изображен простой случай, когда компас расположен горизонтально поверхности земли на экваторе. Красной стрелкой отмечено направление к северному полюсу. Пунктиром отмечены проекции этой стрелки на соответствующие оси. Казалось бы, вот оно! Катет равен катету на тангенс противолежащего угла. Для того чтобы получить угол направления придется взять арктангенс отношения катетов: H = atan(X/Y) Если мы проведем эти несложные вычисления, мы действительно получим какой-то результат. Жаль только, что мы всё еще не получим верный ответ, ведь мы не учли кучу факторов:

  1. Смещение и искажение вектора магнитного поля Земли, вследствие внешних воздействий.
  2. Влияние тангажа и крена на показания компаса.
  3. Разница между географическим и магнитным полюсами — магнитное склонение.
В этой статье мы займемся изучением этих проблем и узнаем способы их решения. Но для начала посмотрим на показания магнитометра своими глазами. Для этого нам потребуется их как-то визуализировать.

1. Визуализация показаний магнитометра

Как известно, одна картинка лучше тысячи слов. Поэтому, для большей наглядности, воспользуемся 3D-редактором для визуализации показаний магнитометра. Для этих целей, можно использовать SketchUp с плагином «cloud» (http://rhin.crai.archi.fr/rld/plugin_details.php?id=678) Указанный плагин позволяет загружать в SketchUp массивы точек из файла вида: 212 -321 -515 211 -320 -515 209 -318 -514 213 -319 -516 Разделителем может быть символ табуляции, пробел, точка с запятой и т.п. Всё это указывается в настройках плагина. Там же можно попросить склеить все точки треугольниками, что в нашем случае не требуется. Самый простой способ сохранить показания магнитометра — передавать их через COM-порт на персональный компьютер в монитор последовательного порта, с последующим сохранением их в текстовый файл. Второй способ — подключить к Ардуино SD карту и записывать данные магнитометра в файл на SD карте. Разобравшись с записью данных и с импортом их в SketchUp, попробуем теперь провести эксперимент. Будем вращать магнитометр вокруг оси Z, а управляющая программа в это время будет записывать показания датчика каждые 100 мс. Всего будет записано 500 точек. Результат этого эксперимента приведен ниже:
Что можно сказать, глядя на этот рисунок? Во-первых, видно, что ось Z действительно была зафиксирована — все точки расположены, более или менее, в плоскости XY. Во-вторых, плоскость XY немного наклонена, что может быть вызвано либо наклоном моего стола, либо наклоном магнитного поля Земли 🙂 Теперь взглянем на эту же картину сверху:
Первое, что бросается в глаза — центр координат находится совсем не в центре очерченного круга! Скорее всего, измеряемое магнитное поле чем-то «сдвинуто» в сторону. Причем это «что-то» имеет напряженность, выше оной у естественного поля Земли. Второе наблюдение — круг немного вытянут в высоту, что указывает уже на более серьезные проблемы, о которых мы поговорим ниже. А что получится, если вращать компас вокруг всех осей одновременно? Правильно, получится не круг, а сфера (точнее сфероид). Вот такая сфера получилась у меня:
Дополнительно к основным 500 точкам сферы, добавлены еще три массива, по 500 точек в каждом. Каждая из добавленных групп точек отвечает за вращение магнитометра вокруг фиксированной оси. Так, нижний круг получен вращением прибора вокруг оси Z. Круг справа — вращением вокруг оси Y. Наконец, плотное кольцо точек слева отвечает за вращение магнитометра вокруг оси X. Почему эти круги не опоясывают шар по экватору, читаем ниже.

2. Магнитное наклонение

На самом деле, последний рисунок может показаться немного странным. Почему будучи в горизонтальном состоянии, датчик показывает почти максимальное значение по оси Z?? Ситуация повторяется если мы наклоним прибор, например, осью X вниз — опять получим максимальное значение (левый круг). Получается, что на датчик постоянно действует поле направленное сквозь датчик вниз к поверхности земли! Ничего необычного в этом на самом деле нет. Эта особенность магнитного поля земли называется магнитным наклонением . На экваторе поле направлено параллельно земле. В южном полушарии — вверх от земли под некоторым углом. А в северном полушарии, как мы уже наблюдали — вниз. Смотрим картинку.
Магнитное наклонение никак не помешает нам пользоваться компасом, поэтому не будем о нем особо задумываться, а просто примем к сведению это интересный факт. Теперь же перейдем, непосредственно к проблемам.

2.1. Искажения магнитного поля: Hard & Soft Iron

В зарубежной литературе, искажения магнитного поля принято делить на две группы: Hard Iron и Soft Iron. Ниже приведена картинка, иллюстрирующая суть этих искажений.
Hard Iron Даю справку. Интенсивность магнитного поля земли сильно зависит от земных координат, в которых оно измеряется. Например, в Кейп Тауне (Южная Африка) поле составляет около 0.256 Гс (Гаусс), а в Нью-Йорке в два раза больше — 0.52 Гс. В целом по планете, интенсивность магнитного поля варьируется в диапазоне от 0.25 Гс до 0.65 Гс. Для сравнения, поле обычного магнитика на холодильник составляет 50 Гс, — это в сто раз больше чем магнитное поле в Нью Йорке!! Понятно, что чуткий магнитометр может легко запутаться, если рядом с ним возникнет один из таких магнитов. На квадрокоптере, конечно, таких магнитиков нет, но зато есть куда более мощные редкоземельные магниты вентильных двигателей, а еще электронные цепи контроллера, провода питания и аккумуляторная батарея. Такие источники паразитного магнитного поля называют Hard Iron. Воздействуя на магнитометр, они придают некоторое смещение измеряемым значениям. Посмотрим, имеются ли Hard Iron искажения у нашей сферы. Проекция точек сферы на плоскость XY, выглядит следующим образом:
Видно, что облако точек имеет некоторое заметное смещение по оси Y влево. По оси Z смещение практически отсутствует. Ликвидировать такое искажение очень просто: достаточно увеличить или уменьшить получаемые от прибора значения на величину смещения. Например, калибровка Hard Iron для оси Y будет иметь вид: Ycal_hard = Y — Ybias где Ycal_hard — калиброванное значение; Y — исходное значение; Ybias — величина смещения. Чтобы вычислить Ybias нам потребуется зафиксировать максимальное и минимальное значение Y, а затем воспользоваться простым выражением: Ybias = (Ymin-Ymax)/2 — Ymin где Ybias — искомая величина смещения; Ymin — минимальное значение оси Y; Ymax — максимальное значение оси Y. Soft Iron В отличие от Hard Iron, искажение типа Soft носит куда более коварный характер. Опять же, проследим этот вид воздействия на собранных ранее данных. Для этого, обратим внимание на то, что шар на картинке сверху, и не шар вовсе. Его проекция на ось YZ немного сплющена сверху, и слегка повернута против часовой стрелки. Вызваны эти искажения, наличием ферромагнитных материалов рядом с датчиком. Таким материалом является металлическая рама квадрокоптера, корпус двигателя, проводка, или даже металлические болты крепления. Исправить ситуацию со сплющенностью поможет умножение показаний датчика на некоторый множитель: Ycal_soft = Y * Yscale где Ycal_hard — калиброванное значение; Y — исходное значение; Yscale — коэффициент масштабирования. Для того чтобы найти все коэффициенты (для X,Y и Z) необходимо выявить ось с наибольшей разностью между максимальным и минимальным значением, и затем воспользоваться формулой: Yscale = (Amax-Amin)/(Ymax-Ymin) где Yscale — искомый коэффициент искажения по оси Y; Amax — максимальное значение на некоторой оси; Amin — минимальное значение на некоторой оси; Ymax — максимальное значение на оси Y; Ymin — минимальное значение на оси Y. Другая проблема, из-за которой сфера оказалась повернутой, устраняется чуть сложнее. Однако, вклад такого искажения в общую ошибку измерения достаточно мал, и мы не будем подробно расписывать способ его «ручного» нивелирования.

2.2. Автоматическая калибровка

Надо сказать, получение вручную точных минимальных и максимальных показаний магнитометра задача не из простых. Для этой процедуры, как минимум, потребуется специальный стенд, в котором можно фиксировать одну из осей прибора. Гораздо проще воспользоваться автоматическим алгоритмом калибровки. Суть этого метода состоит в аппроксимации облака полученных точек элипсоидом. Другими словами, мы подбираем параметры элипсоида таким образом, чтобы он максимально точно совпадал с нашим облаком точек, построенных на основе показаний магнитометра. Из подобранных таким образом параметров, мы сможем добыть величину смещения, коэффициенты масштаба и коэффициенты для ортогонализации осей. В интернете можно найти несколько программ, пригодных для этого. Например, MagCal, или еще одна — Magneto. В отличие от MagCal, в Magneto рассчитанные параметры выводятся в готовом к использованию виде, без необходимости дополнительных преобразований. Именно этой программой мы и воспользуемся. Главная и единственная форма программы выглядит следующим образом:
В поле «Raw magnetic measurements» выбираем файл с исходными данными. В поле «Norm of Magnetic or Gravitational field» вводим величину магнитного поля Земли в точке нашей дислокации. Учитывая, что этот параметр никак не влияет на угол отклонения стрелки нашего виртуального компаса, я поставил значение 1090, что соответствует значению 1 Гаусс. Затем жмем кнопку Calibrate и получаем:
  1. значения смещения по всем трем осям: Combined bias (b);
  2. и матрицу масштаба и ортогонализации: Correction for combined scale factors, misalignments and soft iron (A-1).
С помощью волшебной матрицы мы ликвидируем сплющенность нашего облака и устраним его легкое вращение. Общая формула калибровки выглядит следующим образом: Vcal = A-1 * (V — Vbias) где Vcal — вектор калиброванных значение магнитометра для трех осей; A-1 — матрица масштаба и ортогонализации; Vbias — вектор смещения по трем осям.

3. Влияние наклона магнитометра на вычисляемое направление

На очереди проблема номер два. В начале статьи мы уже попробовали вычислить угол между севером и стрелкой компаса. Для этого годится простая формула: H = atan(Y/X) где H — угол отклонения стрелки компаса от северного направления; X,Y — калиброванные значения магнитометра. Представим теперь, что мы фиксируем ось X строго по направлению к северу, и начинаем вращать датчик вокруг этой оси (придаем крен). Получается, что проекция поля на ось X остается неизменной, а вот проекция на Y меняется. Согласно формуле, стрелка компаса будет показывать либо на северо-запад, либо на северо-восток, в зависимости от того, в какую сторону делаем крен. Это и есть, заявленная в начале статьи, вторая проблема электронного компаса. Решить проблему поможет геометрия. Нам нужно всего лишь повернуть магнитный вектор в систему координат, заданную инклинометром. Для этого, поочередно перемножим две матрицы косинусов на вектор: Vcal2 = Ry*Rx*Vcal где Vcal — магнитный вектор, очищенный от Hard и Soft искажений; Rx и Ry — матрицы поворота вокруг осей X и Y; Vcal2 — магнитный вектор, очищенный от влияния крена и тангажа. Пригодная для программы контроллера формула будет иметь вид: Xcal2 = Xcal*cos(pitch) + Ycal*sin(roll)*sin(pitch) + Zcal*cos(roll)*sin(pitch) Ycal2 = Ycal*cos(roll) — Zcal*sin(roll) H = atan2(-Ycal2, Xcal2) где roll и pitch — наклоны вокруг осей X и Y; Xcal,Ycal,Zcal — вектор магнитометра (Vcal); Ycal2, Ycal2 — калиброванные значения магнитометра (Zcal2 не считаем — он нам не пригодится); H — угол между севером и стрелкой компаса. (О том, кто такой atan2 можно узнать тут: http://en.wikipedia.org/wiki/Atan2)

3. Разница между географическим и магнитным полюсом

После того как мы получили более или менее точный угол отклонения стрелки компаса от северного направления, пришло время устранить еще одну проблему. Дело в том, что магнитный и географический полюсы на нашей планете, сильно различаются, в зависимости от того, где мы производим измерение. Другими словами, «север» на который показывает ваш походный компас, совсем не тот север где льды и,белые медведи. Для нивелирования этих различий, к показаниям датчика необходимо прибавить (или вычесть) определенный угол, называемый магнитным склонением. Например, в Екатеринбурге магнитное склонение имеет величину +14 градусов, а значит измеренные показания магнитометра следует уменьшить на эти же 14 градусов. Для того чтобы выяснить магнитное склонение в ваших координатах, можно воспользоваться специальным ресурсом: http://magnetic-declination.com/

Заключение

В заключении несколько советов по навигации с помощью магнитометра.
  1. Калибровка должна проводиться именно в тех условиях, в которых беспилотник будет совершать реальный полет.
  2. Магнитометр лучше выносить из корпуса робота на штанге. Так на него будет влиять меньше шумов.
  3. Для вычисления направления лучше использовать связку компас + гироскоп. При этом их показания смешиваются по определенному правилу (data fusion).
  4. Если речь идет о летательном аппарате с большой курсовой скоростью, рекомендуется использовать связку компас + гироскоп + GPS.

В последнее время в печати появились материалы об электронном компасе, как правило, эти материалы предполагают использование в таких приборах магниторезистивных датчиков магнитного поля .

Ниже предлагается рассмотреть отдельные вопросы создания электронного компаса с применением магниточувствительных интегральных схем, именуемых в зарубежной печати “схемами Холла”.Такие схемы сегодня доступны для радиолюбителей, проживающих в странах СНГ .

В настоящее время для определения координат относительно сторон света используются различные навигационные приборы и оборудование. К таким приборам относятся: магнитный и радиокомпас, радиополукомпас, гирокомпас и гирополукомпас, приемники системы GPS и др.

Каждому из этих приборов присущи как определенные преимущества, так и очевидные недостатки. Следует отметить, что ни один из известных навигационных приборов не может обеспечить точного определения азимута во всех районах Земли при любой погоде, различных состояниях магнитосферы и радиопомехах.

Точное определение положения объектов на поверхности Земли и в пространстве представляет собой достаточно сложную техническую задачу, которая решается при помощи магнитометрических систем контроля пространственного положения (МСКПП) с учетом многих факторов.

В связи с этим в морском деле, в авиации, в военном деле применяют совместно компасы различных типов, и на их основе созданы единые (комплексные) курсовые системы.

Однако, в "бытовых целях” наибольшее распространение получили устройства, предназначенных для регистрации магнитного поля Земли (МПЗ) и ориентирования различной аппаратуры на плоскости и в пространстве относительно направления МПЗ.

Наиболее распространенными и доступными (по стоимости) для “обычного пользователя" являются устройства, использующие принцип магнитного компаса.

Немного теории. Для понимания принципов ориентирования по магнитному полю Земли ниже приведем некоторые основные понятия и принципы.

Магнитное поле Земли

Магнитное поле Земли (часто называемое еще и геомагнитным - ГМП) в каждой точке пространства характеризуется вектором напряженности Т, направление которого определяется тремя составляющими X, Y, Z (северной, восточной и вертикальной составляющей) в прямоугольной системе координат (рис. 1), или тремя элементами Земли: горизонтальной составляющей напряженности Н, магнитным склонением D (угол между Н и плоскостью географического меридиана) и магнитным наклонением I (угол между Т и плоскостью горизонта).

Для изучения пространственного распределения основного геомагнитного поля, измеренные в разных местах значения Н, D, I наносят на специальные карты (которые носят наименование магнитных карт Земли) и соединяют линиями точки равных значений элементов. Такие линии называют соответственно изодинамами, изогонами, изоклинами.

Линия (изоклина) I = 0, т.е. магнитный экватор, не совпадает с географическим экватором. С увеличением широты значение I возрастает до 90° в магнитных полюсах. Полная напряженность Т от экватора к полюсу растет от 33,4 до 55,7 А/м (от 0,42 до 0,7 э или от 42 до 70 мкТл).

Ось центрального диполя не совпадает с осью вращения Земли. Северный магнитный полюс расположен в Гренландии близ города Туле (78° северной широты, 69° западной долготы), а южный магнитный полюс расположен в Антарктиде (78° северной широты, 249° западной долготы).

Таким образом, магнитная ось наклонена на 12° к оси вращения Земли. Следует отметить, что понятие “северный магнитный полюс" и "северный магнетизм", как и “южный магнитный полюс” и “южный магнетизм" не совпадают.

Северный магнитный полюс Земли включает понятие южного магнетизма, а южный магнитный полюс - северного. Материковое магнитное поле Земли имеет среднюю напряженность Н около 0,45 э.

Рис. 1. Составляющие магнитного поля Земли.

Однако на земном шаре существуют области магнитных аномалий, где напряженность магнитного поля может превышать среднюю в 2-3 раза. Обычно сильные магнитные аномалии связываются с залежами магнетитовых (FeO, Fe203) и гитаномагнетитовых (примеси ТiO2) руд, с залежами других пород, обогащенных магнетитом, с некоторыми пирроктиловыми (FeS) месторождениями.

Приметами таких аномалий являются Кривой Рог, Кольские аномалии, аномалии на Урале и т.п. Наиболее сильной аномалией на земном шаре является аномалия в районе г. Курска и г. Белгорода, получившая наименование Курской магнитной аномалии (КМА).

Напряженность поля КМА (вертикальная составляющая) достигает здесь 1,Б...1,91 э (150...190 мкТл), Эта аномалия объясняется наличием большого рудного тела под поверхностью Земли. Наиболее известным применением явления земного магнетизма является компас, изобретенный в Китае более 2000 лет тому назад, который начал использоваться примерно в XII веке.

Принцип действия компаса основан на взаимодействии магнитного поля постоянных магнитов компаса с горизонтальной составляющей магнитного поля Земли.

Простейший компас представляет собой круглую коробку из немагнитного материала, в центре которой располагается магнитная стрелка, установленная на остром основании (например, на игле).

Свободно вращающаяся магнитная стрелка поворачивается вокруг оси, располагаясь вдоль силовых линий магнитного поля. Таким образом, стрелка всегда указывает одним из концов в направлении Северного магнитного полюса.

Для определения азимута компас должен находиться в строго горизонтальном положении. Точность определения направления (или азимута) простым компасом составляет З...5п.

Точность современных судовых магнитных компасов в средних широтах и при отсутствии качки достигает 0,3...0,5°. К недостаткам магнитного компаса относится необходимость внесения поправки в его показания на несовпадение магнитного и географического меридианов (поправка на магнитное склонение) и поправки на девиацию (вращение Земли).

Вблизи магнитных полюсов Земли и крупных магнитных аномалий точность показаний магнитного компаса резко снижается, в этих районах приходится пользоваться навигационными приборами других типов .

В связи с бурным развитием микромагнитоэлектроники в последнее время широкое распространение получили т.н. электронные компасы. Электронные компасы имеют массу преимуществ перед традиционными (стрелочными).

Они вибро- и удароустойчивы, к тому же конструкции современных компасов предусматривают: возможность введения местоположения пользователя, установку магнитного склонения, автоматическую компенсацию при воздействии внешних полей, установку маршрута и его запись, прямой интерфейс с электронной системой навигации и т.д.

Рис. 2. Разложение вектора магнитного поля Земли на составляющие.

Точность определения азимута электронным компасом может достигать 0,1°. В таких приборах роль “магнитной стрелки” выполняет преобразователь магнитного поля.

Принципы определения направления вектора МПЗ

На практике определение направления вектора магнитного поля Земли (Н) сводится к измерению напряженности двух его составляющих Нx и Нy (рис. 2) с дальнейшим вычислением угла. Угол ф, в общем случае, определяется по формуле:

Следует отметить, что значения напряженности магнитного поля, определенные преобразователем (датчиком) МП, могут колебаться как по амплитуде (дельта Н), так и по постоянной составляющей (Hy0 и Hx0). С учетом этого уравнение (1) принимает следующий вид (2) (см. врезку).

Так как абсолютные значения синуса и косинуса угла равны при 45 градусах, то вычисления производят только в этой области. Если предположить, что погрешность измерения H составляет 1 %, то при угле 45 градусов получают максимальное отклонение 1,1 градуса.

Для достижения необходимой точности при определении направления менее 1% в работе (2) были сформулированы следующие основные требования к Измерительной системе, предназначенной для определения вектора МПЗ (формула):

  • Должны использоваться, как минимум, два датчика МПЗ. При этом их магниточувствительные элементы располагаются перпендикулярно друг к другу Один датчик МП регистрирует другой
  • Диапазон измерений должен составлять от 20 до ЮОА/м {от 0,25 до 1,25 гс или от 25 до 125 мкТп).
  • Отклонение амплитуды смещения не должно превышать 1% от максимального значения.

Структурная схема электронного компаса

В последние годы на отечественном рынке появилось достаточно много моделей электронных компасов, выпускаемых зарубежными производителями. Эти модели имеют различные характеристики, различный набор функций и различное конструктивное оформление. Стоимость таких устройств составляет от 20 до 1000 USD.

Рис. 3. Возможный вариант структурной схемы электронного компаса.

В зависимости от назначения структурные и электрические схемы электронных компасов могут быть весьма разнообразными. Однако все они содержат некоторые общие узлы уі блоки.

Возможный вариант структурной схемы электронного компаса приведен на рис, 3. Структурная схема электронного компаса содержит следующие основные узлы и блоки:

  • Два канала для измерения напряженности МПЗ по осям X и Y
  • Канал определения угла наклона устройства.
  • Микропроцессор
  • Блок ввода местоположения пользователя.
  • Блок памяти.
  • Интерфейс,
  • Графический и (или) цифровой индикаторы.
  • Стабилизированный источник питания.

Назначение основных узов и блоков

Каналы определения азимута. Представляют собой измерители напряженности магнитного поля Земли по осям X и Y. Выходной сигнал каждого канала выдается через АЦП в цифровой форме и поступает в микропроцессор. Конструктивно каналы могут быть реализованы в виде ИМС.

Канал определения угла наклона, Представляет собой устройство, определяющее угол наклона устройства относительно Земли. Задача данного канала заключается в вы работке специальной поправки в данные канала определения азимута, при углах наклона до ±45° относительно Земли.

Выходной сигнал данного канала выдается через АЦП в цифровой форме и поступает в микропроцессор. Конструктивно канал может быть реализован в виде ИМС.

Микропроцессор служит для обработки сигналов, поступающих с каналов определения азимута и угла наклона, выработки соответствующих поправок и передаче выходных данных, через интерфейс, на графический и цифровой индикаторы направления. Обычно реализуется в виде БИС. Блок ввода местоположения пользователя.

Предназначен для ручного ("клавиатурного”) ввода информации о местоположении (например, страны или города) пользователя. Сигнал с этого блока поступает в микропроцессор, где сравнивается с фиксированной информацией о местоположении стран и городов, хранящейся в блоке памяти.

Блок памяти. Энергонезависимое электронное устройство, предназначенное для хранения сведений о географических координатах стран и городов. Может хранить данные о 500 и более объектах. Интерфейс или блок сопряжения.

Представляет собой электронное устройство, преобразующее выходной сигнал микропроцессора в форму, необходимую для работы графического и цифрового индикаторов.

Основную проблему при разработке электронных компасов составляет оптимальный выбор типа датчика или преобразователя магнитного поля (ПМП).

В качестве датчиков МП в таких устройствах могут использоваться различные типы преобразователей магнитного поля: магниторезисторы, высокочувствительные элементы Холла, магнитодиоды и магнитотранзисторы, магниточувствительные интегральные схемы, миниатюрные индуктивные и феррозондовые датчики и т.п.

Выбор типа ПМП осуществляется с учетом требуемых параметров и характеристик разрабатываемой аппаратуры, условий ее эксплуатации и целого ряда экономических факторов.

Основное требование, предъявляемое к ПМП, предназначенных для этих целей, - это высокая и явно выраженная координатная магнитная чувствительность.

В настоящее время наиболее широкое применение в составе электронных компасов получили тонкопленочные магниторезисторы и миниатюрные индуктивные датчики МП.

Принцип действия таких устройств рассматривается в работах . Следует отметить, что разработка современного электронного компаса в “домашних условиях” представляет собой достаточно сложную задачу даже для квалифицированного радиолюбителя.

Однако, для понимания принципов работы и оценки возможностей подобных приборов, ниже рассматриваются два простейших варианта “электронного компаса", реализованных с применением магниточувствительной ИС, построенной с использованием элемента Холла.

М. Бараночников. г. Москва. E-mail: baranochnikov[a]mail.ru РМ-07-17.

Литература:

  1. Бараночников М.Л. Микромагнитоэлектроника. Том 1. - ДМК Пресс, Москва, 2001 г., 544 с.
  2. Wellhausen Н. Elecktronischer Kompab // Elektronic, 8/14, 4, 1987. - рр. 85 - 89.
  3. Бараночников М. Л. Микромагнитоэлектроника. Том 1. Том 2. - Лазерный диск. ДМК Пресс, Москва, 2002 г.
  4. Электронный компас, - Радиохобби, №2, 2002 г, с. 18.
  5. Бузыканов С. Применение магниторезистивных датчиков в системах навигации. - Chip news, №5, 2004 г., с. 60 - 62.

Когда выбираешься за город, то привычная вещь вроде смартфона уже не помогает. Необходимо надежное устройство, помогающее сориентироваться в пространстве (а порой и во времени), а также получить другую важную информацию. Причем устройство должно быть максимально легким, компактным и, раз уж на то пошло, многофункциональным. Этот цифровой компас именно такой. С ним (и с заряженными батарейками в запасе) не заблудишься, точно определишь точку, в которой находишься, а значит поймешь, куда двигаться дальше.

Устройство весит значительно меньше 100 грамм, удобно и легко лежит в руке, имеет несколько встроенных датчиков, жидкокристаллический дисплей и возможность сохранять историю последних зафиксированных данных (до 8 позиций). Удобный шнурок для подвешивания на шею и светодиодный элемент для подсветки в темноте дополняют базовые возможности до комфортного уровня.

Встроенные функции:

  1. часы;
  2. календарь;
  3. термометр;
  4. барометр;
  5. высотомер;
  6. компас;
  7. погодный датчик.

А всё вместе дает возможность не только определять координаты своего местонахождения, но и прокладывать верный курс до точки назначения.

Часы и календарь

С этими понятными даже детям счетчиками всё просто. Однажды устанавливаете верные дату и время и отслеживаете текущий момент. Можно выбрать 12- или 24-часовой форматы отображения времени. Нажатие кнопки SET позволяет переходить от времени к дате. А долгое нажатие кнопки SET позволяет войти в режим настроек, в котором можно установить дату/время, а также выбрать привычные единицы измерения.

Термометр

Температура может показываться как в градусах Цельсия, так и в градусах Фаренгейта. Есть также несколько вариантов определения состояния погоды на ближайшее время: ясно, преимущественно облачно, облачно и осадки. Информация обновляется каждые 30 секунд.

Барометр

Значение атмосферного давления, как и время с датой и текущей температурой, отображается на дисплее в стандартном режиме. Информация обновляется раз в 30 секунд. Если нужны точные данные, необходимо нажать и удерживать кнопки SET и ALTI. Атмосферное давление может отображаться как в миллиметрах ртутного столба, так и в Гекто-Паскалях.

Высотомер

Нажатие кнопки ALTI переводит в режим измерения абсолютной высоты (ABS). Данные обновляются каждые 5 секунд. Удержание кнопки ALTI переводит в режим измерения сравнительной высоты (REL), показания при этом сбрасываются на 0. Высоту можно замерять как в метрах, так и в футах.

Компас

Нажатие на кнопку COMP позволяет перейти в режим компаса. Удержание той же кнопки переводит в режим его проверки. О том, как это делать, подробно рассказано в сопроводительной инструкции. При измерении направления следует держать компас вдали от воздействия магнитных полей. Искажения могут происходить из-за других магнитов поблизости, а также из-за железных и стальных предметов.

В общем, с таким ручным электронным помощником вы не потеряетесь. Еще раз напомним про запас батареек. Здесь используются "мизинчиковые".

Подарок путешественнику

Такую полезную вещь, конечно, оценит тот, кто любит надолго уходить в поход, особенно в гористой местности. А еще ему могут сгодиться шагомер и мультитул 4 в 1 . В мультитуле есть мощный фонарь, лампа-ночник, вентилятор и музыкальное устройство (воспроизведение MP3-файлов и радио). Во время стоянок и в темноте очень выручает.

Характеристики

  • 7 в 1: часы, календарь, термометр, погодный датчик, компас, высотомер, барометр;
  • инструкция прилагается;
  • ЖК-дисплей;
  • подсветка светодиодным сигналом в течение 5 секунд;
  • сохранение и просмотр истории предыдущих значений;
  • размеры: 6.5 х 2.5 х 10 см;
  • вес: 85 г;
  • период обновления данных: 30 секунд;
  • температурный диапазон: от -10 °C до 50 °C (14-122 °F);
  • диапазон высоты: от -305 м до 9 144 м (-1 000-30 000 футов);
  • диапазон атмосферного давления: от 225 мм рт ст до 788 мм рт ст (301-1 051 гПа);
  • работает от 2 ААА ("мизинчиковых") батареек (нет в комплекте);
  • есть шнурок;
  • бренд: LeFutur;
  • упаковка: фирменная коробка;
  • размеры коробки: 7 х 11 х 3 см.

Бывают в истории споры, заведомо обреченные на нахождение в любом случае неверного ответа, ибо в их основу положена неисправимая ошибка. Один из таких возник совсем недавно, с тех пор как человечество обзавелось системой кто точнее - цифровой компас или магнитный? Люди, задающие такой вопрос, явно что-то не то делали на школьных уроках географии...

Вот первое уточнение вопроса: на какой именно полюс вы хотите попасть?

Ответ вроде бы напрашивается сам собой. Даже явные неучи еще с тех практикумов по географии, когда прибором для ориентации на местности служил компас Адрианова (ныне кстати), волей-неволей выучили, что синий конец компасной стрелки всегда указывает на север. Стало быть, на Соответственно, красный конец - на южный.

Логично, но неверно. Такой ответ был бы уместен, скажем, в XVIII веке, когда шарообразность Земли уже была доказана, но на ее макушку и "антиподную" сторону еще никто из исследователей не заглядывал. Впрочем, в свои юные годы история компаса вообще никаких полюсов не знала. Просто, начиная с древних китайцев, подметили, что намагниченная железная игла все время указывает в одном направлении, и пользовались этим в навигации на суше и на море. А когда компас в XIII веке транзитом через арабов попал в Европу, капитаны кораблей поначалу остерегались использовать новинку - боялись, что их обвинят в колдовстве. Но когда разобрались, что к чему, началась зпоха Великих за что компас справедливо вошел в список величайших изобретений ума человеческого.

А в XIX веке с интервалом в 10 лет британский полярный исследователь Джон Росс и его племянник Джеймс достигли, соответственно, северного и южного магнитных полюсов Земли. И сразу же определили, что с географическими полюсами они никак не совпадают.

Позднее выяснилось: мало того - еще и дрейфуют по земной поверхности. За ними не то, что цифровой не угонится. Средняя скорость их перемещения - 10 километров в год. Примерно три с половиной века северный магнитный полюс блуждал по территории Канады, а во второй половине прошлого века вдруг со "страшной" скоростью (в 2009-м - 64 километра в год!) рванул в Россию, к Так что сейчас стрелка магнитного компаса, если вы будете следовать точно по ней, приведет вас на паковый арктический лед, в точку с координатами 85 градусов 54" минуты северной широты и 147 градусов восточной долготы.

Теперь, когда мы это уяснили, разберемся, как работает цифровой компас, он же электронный. Никаких магнитов тут, понятно, не требуется. Приемник по сигналам со спутников системы GPS или ГЛОНАСС определяет свое местонахождение, накладывает данные на координатную сетку карты и тут же показывает на экране направление на север, но в данном случае - уже на географический полюс.

Все остальные функции электронного устройства определяются его назначением. Наиболее совершенные помогают проложить и запомнить дюжину маршрутов с сотнями контрольных точек, измерять пройденное расстояние и скорость движения, сосчитать сделанные шаги, а заодно и калории, что были сожжены при этом. Положа руку на сердце, это не компас даже, а навигатор.

И тут важно второй раз уточнить вопрос о том, какой цифровой компас вы имеете в виду. Поскольку имеются устройства, использующие для ориентации по сторонам света двухосевые магнитные резисторы. В принципе, они - те же самые классические компасы, сверяющие направление на полюса по Со всеми отсюда вытекающими.

Но, дорогие любители электронных штучек, что же вы будете делать, если вся эта машинерия откажет или останется без энергии? Не пригодится ли вам в этом случае старый добрый магнитный компас?

Просмотров