Новый плазменный ракетный двигатель принцип работы. Ядерные и плазменные ракетные двигатели. Спд на земле и в космосе

Наверняка каждый человек согласится с тем, что космос манит. И он уже исследуется! Вот только очень медленно. Потому что крайне сложно создать космический аппарат, который мог бы быстро преодолеть внушительные, исчисляемые сотнями тысяч километров расстояния.

Вся суть в топливе! Оно не бесконечное. Нужны современные агрегаты с другим принципом работы, и помощнее. Да, есть ядерные ракетные двигатели (ЯРД). Но их максимальный предел - 100 км/сек. К тому же их рабочее тело нагревается в ядерном реакторе.

А вот плазменные двигатели - это перспектива, которая заслуживает внимания.

Краткий экскурс в физику

Для начала стоит отметить, что любому ракетному двигателю свойственно выбрасывание из сопла слабо ионизированной плазмы. Вне зависимости от его вида. Но «классическими», настоящими плазменными двигателями являются те, которые ускоряют плазму благодаря электромагнитным силам, оказывающим воздействие на заряженные частицы.

Процесс сложный. Любое электрическое поле, которое ускоряет в плазме заряды, придаёт электронам и ионам равные по модулю суммарные импульсы. Вдаваться в эти подробности необязательно. Достаточно знать, что импульс - это величина измерения механического движения тела.

Поскольку плазма является электрически нейтральной, то сумма всех положительных зарядов равна по модулю сумме отрицательных. Есть определённый отрезок времени - он бесконечно мал. За эти считаные мгновения все положительные ионы получают мощный импульс. Такой же направляется в обратную сторону - к отрицательным. Что получается? Суммарный импульс в итоге равен нулю. А значит, тяги не возникает.

Такой вывод: для электрического «разгона» плазмы необходимо разделение разноименных зарядов. Положительные будут разгоняться тогда, когда отрицательные выведены из зоны действия. Сделать это сложно, так как кулоновские силы притяжения восстанавливают электрическое равновесие, возникая между плазменными разноимённо заряженными сгустками.

И как же удалось воплотить этот принцип работы в плазменном ракетном двигателе? За счёт магнитных и электростатических полей. Только вот во втором случае агрегат традиционно именуется ионным, а в первом - именно плазменным.

Концепт из 60-х

Порядка пятидесяти лет тому назад советский физик Алексей Иванович Морозов предложил концепт плазменного ракетного двигателя. Его с успехом испытали в 70-х.

В нём для разделения пресловутых зарядов использовалось радиальное магнитное поле. Получается, что электроны, поддаваясь воздействию силы Лоренца, будто бы по спирали навиваются на силовые линии магнитного поля, которое их «выдёргивает» из плазмы.

Что при этом происходит? Массивные ионы инерционно проходят магнитное поле, набирая ускорение в продольном направлении электрического поля.

Да, данная схема имеет преимущества перед той, которая реализована в плазменно-ионных двигателях, однако есть и минус. Она не даёт возможности добиться большей тяги, что отражается на скорости.

Реален ли путь к звёздам?

На плазменные ракетные двигатели возлагалось немало надежд. Однако какими бы инновационными они ни казались, полёт до далёких небесных тел в рамках одной человеческой жизни обеспечить не могут.

Чтобы придать аппарату достаточный для этого тяговый импульс (а это как минимум 10 000 000 м/сек), нужно создать магнитное поле нереальной на данный момент мощности в 10 000 Тесла. Это возможно лишь с помощью взрывомагнитных генераторов А.Д. Сахарова и прочих современных аппаратов, работающих по тому же принципу.

Но опять-таки, такие мощные поля существуют на протяжении катастрофически малого временного отрезка, измеряемого в микросекундах. Чтобы добиться лучшего результата, приходилось бы утилизировать энергию ядерного взрыва силой в 10 кт. Для справки - последствия такого «явления» выражаются в 4-километрового диаметра облаке высотой в 2 км. А «гриб» и вовсе достигает вверх 7 км.

Так вот, при массе корабля в 100 тонн потребовался бы миллион подобных импульсов. И это лишь для увеличения его скорости на 100 километров в секунду! К тому же только при условии, что заряды не понадобилось бы брать в путь на борт. В вероятности они могли бы быть размещены в космическом пространстве на участке разгона.

Но целый миллион ядерных бомб? Нереально. Это тысячи тонн плутония! А его за всё время существования ядерного оружия произвели чуть больше 300 тонн. Так что плазменный ракетный двигатель с принципом работы, основанным на магнитном разделении зарядов, путь к далёким звёздам не обеспечит.

Холловский двигатель

Это вариант плазменного агрегата, для которого нет ограничений, что налагаются объёмным зарядом. Их отсутствие обеспечивает большую плотность тяги. А это значит, что холловский плазменный двигатель может увеличить скорость космических аппаратов в разы, если сравнивать, например, с ионным агрегатом того же размера.

В основе работы аппарата лежит эффект, который открыл американский физик Эдвин Холл в 1879 году. Он продемонстрировал, как в проводнике с взаимно перпендикулярным магнитным и электрическим полем образуется электроток. Причём в направлении, которое им обоим перпендикулярно.

Проще говоря, в холловском агрегате плазма образуется зарядом между анодом (+) и катодом (-). Действие несложное - разряд отделяет электроны от нейтральных атомов.

Стоит отметить, что на околоземных орбитах сосредоточено порядка 200 спутников с холловскими плазменными двигателями. Для космических аппаратов его мощности хватает вполне. К слову, именно такой агрегат использовался Европейским космическим агентством в целях экономичного разгона SMART-1 - его первой автоматической станции для исследования Луны.

АИПД

Теперь можно поговорить про абляционные импульсные плазменные двигатели (АИПД). Они подходят для применения в малых космических аппаратах, которые имеют неплохой спектр функциональных возможностей. Для его расширения просто необходим высокоэффективный малогабаритный агрегат, способный корректировать и поддерживать орбиту. АИПД - перспективный аппарат с рядом достоинств, к которым можно отнести:

  • Постоянную готовность к работе.
  • Впечатляющий ресурс.
  • Минимальную инерционность.
  • Возможность точно дозировать импульс.
  • Отсутствие импульса последействия.
  • Зависимость тяги от потребляемой мощности.

Импульсные плазменные двигатели данного типа изучены в деталях. Исследователи, конечно, сталкивались и с проблемами. В частности - с поддержанием длительной работы агрегата, препятствием для которого является науглероживание поверхности.

Ещё в рамках одного из исследований, посвящённого изучению АИПД-ИТ, было выяснено, что у этого агрегата основной разряд горит на выходе из канала. А это характерная черта для двигателей намного более внушительной энергии.

Пример установки АИПД - спутник Earth Observer 1. Но претендовать на двигатель коррекции МКА он не может, поскольку потребляет слишком много энергии (60 Вт). К тому же у него низкий суммарный импульс.

Стационарный двигатель

Об этом изобретении тоже стоит сказать пару слов. Стационарный плазменный двигатель имеет особенность в виде малой вырабатываемой мощности и компактности.

Он может использоваться в космической технике как исполнительный орган электрореактивной установки. Или же в рамках научных исследований. С помощью данного изобретения вполне реально моделировать направленные плазменные потоки.

По сути, такой плазменный двигатель - это магнетрон, широко применяемый в промышленности. Он, в свою очередь, представляет собой технологическое устройство, с помощью которого тонкие плёнки материала наносятся на подложку катодным распылением мишени в плазме. Но не нужно путать данное устройство с вакуумными магнетронами. Они выполняют совершенно другую функцию - генерацию СВЧ-колебаний.

С 1995 года стационарные плазменные двигатели задействованы в системах коррекции серии связных геостационарных KA. Потом, начиная с 2003 г., данные устройства стали применять в зарубежных геостационарных спутниках. К началу 2012 года уже 352 двигателя было установлено на аппаратах, которые вышли в открытый космос.

MPD-Thruster

Это ещё один концепт плазменного агрегата. С ним связано немало надежд на космические технологии.

В чём идея? Создаётся заряд плазмы между катодом и анодом, который способствует индуцированию кольцевого магнитного поля. В действие вступает сила Лоренца, при помощи которой поле воздействует на движущиеся заряды тока, вследствие чего определённая их часть отклоняется в продольном направлении. В результате возникает плазменный сгусток, истекающий «вправо». Именно он формирует тяговый толчок.

Данный двигатель осуществляет работу в импульсном режиме, поскольку кратковременные паузы между разрядами необходимы - так копится заряд на электродах.

Чем перспективен MPD-Thruster? Он работает без разделения разноименных зарядов. Так как они в зарядном токе двигаются встречно. Это значит, что и силы Лоренца имеют идентичное направление.

В теории у данного концепта очень выдающиеся показатели. Он может развивать впечатляющую тягу. Но и нюансы тоже есть. Магнитному полю не подвластен «разгон» электрических зарядов. Всё из-за того, что сила Лоренца оказывает воздействие, перпендикулярное их скорости. То есть не изменяет кинетические показатели. MPD-Thruster только немного изменяет направления, по которым следуют заряды - для того чтобы плазма вылетала наружу продольно.

В идеале ток между катодом и анодом должен быть в разы плотнее. Это обязательно для создания тяги. И требует больших затрат электрической энергии. Которая, впрочем, не уступает мощности плазменной струи.

Если удельный импульс составит 1000 километров в секунду, а тяга - 100 кг, то на потребление будут уходить сотни мегаватт. Которые генерировать в космосе практически невозможно. Даже если допустить такую вероятность, корабль с MPD-Thruster, имеющий нетто-массу в 100 тонн, разгонится до отметки в 10 000 км/сек. лишь за 317 лет! И это при запредельно астрономическом стартовом весе, составляющем 2,2 миллиона тонн.

При таких показателях даже невозможно представить расход газа в агрегате, пропускающем электронные заряды. И никаких подсчётов не нужно делать, дабы понять - никакие электроды не способны выдержать столь весомых химических и тепловых нагрузок.

Квантовый аппарат EmDrive

Это изобретение Роджера Шоера из Британии, над которым чуть ли не в открытую смеялось всё международное научное сообщество. Почему? Потому что его квантовый вакуумный плазменный двигатель считался невозможным. Ибо его принцип противоречит законам, которые являются фундаментом физики!

Но, как оказалось, этот плазменный космический двигатель работает, причём весьма успешно! Выяснить данный факт удалось в ходе испытаний NASA.

Агрегат прост по своей конструкции. Тяга создаётся посредством микроволновых колебаний вокруг вакуумного контейнера. А электроэнергия, необходимая для их выработки, добывается из солнечного света. Говоря простым языком - мотор не требует использования топлива и способен работать если не вечно, то как минимум до момента поломки.

Испытатели были в шоке. Двигатель тестировался учёным Гвидо Фетта и командой из NASA Eagleworks, которой руководил Гарольд Уайт - специалисты из космического центра им. Линдона Джонсона. После детального изучения изобретения была опубликована статья, в которой испытатели заверили читателей - аппарат работает и успешно создаёт тягу, пусть это и является необъяснимым противоречием закону о сохранении импульса.

И всё же учёные заявили, что данный агрегат предполагает взаимодействие с так называемым квантовым вакуумом виртуальной плазмы.

Проблема эффективного разделения зарядов

Многие физики пессимистично уверяют - она нерешаема. Есть передовые проекты, в рамках которых разрабатываются инновационные плазменные агрегаты с мощностью в 5 МВт и импульсом в 1000 км/сек., однако их тяга всё равно остаётся слишком маленькой для преодоления больших расстояний.

Разработчики понимают эту проблему и ищут другие подходы. Один из самых перспективных проектов в наше время - это VASIMR. Его удельный импульс равен 50 км/сек., а тяга составляет 6 ньютонов. Вот только VASIMR на самом деле плазменным агрегатом не является. Потому что он вырабатывает высокотемпературную плазму. Она берёт разгон в сопле Лаваля - без использования электроэнергии, только благодаря газодинамическим эффектам. А ускоряется плазма так же, как и газовая струя набирает скорость на выходе из привычного ракетного агрегата.

Заключение

В завершение хотелось бы сказать, что ни один плазменный двигатель для космических кораблей из существующих в наше время не способен доставить ракету даже к ближайшим звёздам. Это касается как экспериментально проверенных аппаратов, так и теоретически просчитанных.

Многие учёные приходят к пессимистичному заключению - разрыв между нашей планетой и звёздами фатально непреодолим. Даже до системы Альфа Центавра, некоторые компоненты которой видны невооружённым глазом с Земли, а ведь расстояние составляет 39,9 триллиона километров. Даже на космическом аппарате, способном передвигаться со скоростью света, преодоление данного расстояния составило бы около 4,2-4,3 лет.

Так что плазменные агрегаты звездолётов - это, скорей, из сферы научной фантастики. Но это ничуть не преуменьшает их значимость! Их используют в качестве маневровых, вспомогательных и корректирующих орбиты двигателей. Поэтому изобретение вполне оправдано.

А вот ядерный импульсный агрегат, который утилизирует энергию взрывов, имеет вероятный потенциал развития. Во всяком случае, как минимум в теории отправка автоматического зонда в ближайшую звёздную систему является возможной.

Плазменные двигатели сегодня применяются в космической промышленности. Однако эти системы в отличие от жидкостных моделей могут использоваться только в вакуумной среде. Их чаще всего применяют в космической промышленности для удержания стационарного спутника на определенных координатах. Недавно российские физики испытали плазменный двигатель для самолетов. Его внедрение будет возможным только после создания генераторов энергии подходящих размеров .

Принцип действия плазменного двигателя

Плазменные системы представляют собой вариант ракетного двигателя, преобразующего топливо в ионизированный газ. В перспективе разработчики рассматривают применение этого оборудования для совершения сверхбыстрых перелетов в космическом пространстве. Первые разработки таких установок велись еще во второй половине XX века .

Двигатель этого типа работает по следующему принципу:

  1. На начальном этапе происходит подача газа в специальную камеру, чья внутренняя поверхность исполняет роль катода, а внешняя - анода.
  2. При подаче высокого напряжения магнитное поле формирует газовый разряд с последующей ионизацией газа, который превращается в плазму.
  3. Плазменная субстанция, повинуясь физическим законам, вырывается из рабочей зоны, создавая реактивную тягу.

Мощность оборудования напрямую зависит от силы воздействия магнитного поля и габаритов устройства. Процесс образования плазмы протекает быстрее и легче в вакуумной среде, чем в условиях атмосферы.

Перспективы новейшей разработки

Устройство нового типа, по утверждению разработчиков, существенно превосходит своих предшественников по мощности. Оно представляет собой 6 анодов, установленных вокруг катода. Под воздействием наносекундных импульсов в устройстве происходят газовые разряды, создающие ионизацию.

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.

Плазменные двигатели: миф и реальность

Проклятие Циолковского

Экстремально сложная проблема создания космического аппарата, способного за разумное время (сравнимое с человеческой жизнью) преодолеть межзвездные расстояния, обусловлена парадигмой традиционной ракеты. Которая несет на борту запас топлива и, как следствие, расходует на его разгон почти всю извлекаемую из топлива энергию! Математическим выражением этого проклятия является т.н. формула Циолковского, вытекающая из закона сохранения импульса:

Здесь не учитываются затраты топлива на подъем с Земли и выход на орбиту, где начинается разгон до крейсерской скорости. Однако очевидно, что прежде чем отправиться в далекое путешествие, корабль будет собран из модулей на околоземной или окололунной орбите.


Ионный двигатель

Н а сегодняшний день отсутствует ясное представление о том, как именно космические аппараты когда-нибудь преодолеют рубеж скорости в 10 000 км/cек. Это — примерно 130 лет полета до ближайшей звездной системы Альфы Центавра. Нет смысла рассматривать бесплодные фантазии вроде фотонного звездолета. Нелепа сама идея использовать для создания тяги фотоны с их ничтожным по сравнению с энергией импульсом! В качестве реальной возможности рассматривается двигатель, использующий энергию термоядерного синтеза. Однако предлагаемые методы синтеза в малом масштабе, сводящиеся к поджиганию таблеток из дейтерия + гелия-3 лучами лазеров или пучками ионов/электронов, едва ли когда-нибудь будут реализованы на борту космического судна . Надежды на солнечные паруса безнадежны, т.к. по мере удаления от Солнца их тяга стремится к нулю. При площади паруса в 1000 кв. км и фантастической массе аппарата с парусом в 1 тонну, через год будет пройдено 107.7 млрд. км, а скорость парусника достигнет 1714 км/сек. И это практический предел, поскольку даже через 700 лет полета, когда аппарат достигнет системы Альфа-Центавра, скорость не превысит 1715 км/сек. Полубезумные проекты парусов размером с Европу, которые приводятся в движение миллионами лазеров с Луны, наглядно демонстрируют бессилие идеи космического парусника. Хотя для полетов в Солнечной системе, не слишком далеко от Солнца, она имеет определенную перспективу.

Среди испытанных конструкций, способных дать существенную тягу, вне конкуренции ядерные двигатели с теплоносителем (ЯРД). В СССР был разработан и испытан превосходный образец такой установки — РД0410 http://www.kbkha.ru/?p=8&cat=11&prod=66 . Скорость истечения рабочего тела из сопла, т.е. удельный импульс Я РД может состав лять9 - 10 км/сек . Это более, чем вдвое превышает показатели любых химических ракетных двигателей. При разумном ограничении стартовой массы в 10 000 тонн и скромной нетто-массе 100 т (без учета топлива и рабочего тела) , предельная скорость корабля

Отлично для полетов в Солнечной системе, но не годится для путешествия в систему Альфа Центавра, которое продлилось бы около 29 000 лет! Двухступенчатая схема даст вдвое большую скорость, но стартовая масса вырастет на порядок. Для нашего корабля с ЯРД и нетто-массой 100 т, который разогнался до скорости 200 км/сек, стартовая масса приблизилась бы к 50 миллиардам тонн! Скорости км/сек отвечает не столь кошмарный, но тоже впечатляющий запас рабочего тела, который превышает 2 миллиона тонн . Таким образом 100 км/сек — это трудно достижимый, практический предел для ракет с ЯРД , по мере приближения к которому начинается гигантомания. Из формулы Циолковского вытекает, на первый взгляд, простое решение проблемы. Нужно на порядки увеличить удельный импульс , и тогда не придется экспоненциально наращивать расход рабочего тела. Для этого принципиально не годится ЯРД — в связи с тем, что рабочее тело нагревается в ядерном реакторе. Необходимую скорость истечения струи может обеспечить т.н. плазменный двигатель. Данный термин можно отнести к большому семейству устройств, различным образом оперирующих с плазмой, включая ионные двигатели.

Классические плазма-моторы

Любой ракетный двигатель выбрасывает из сопла слабоионизированную плазму, но плазменным, ионным, электрореактивным обычно называется лишь тот, который ускоряет плазму за счет электромагнитных сил, действующих на заряженные частицы. О днако сделать это очень сложно, поскольку любое электрическое поле, ускоряющее заряды в плазме, придаст равные по модулю суммарные импульсы ионам и электронам. В самом деле, изменение импульса заряда за время равно , где – сила, действующая на заряд (в поле с напряженностью ). Поскольку плазма в целом электрически нейтральна, сумма всех положительных зарядов равна по модулю сумме отрицательных . За бесконечно малое время вся масса положительных ионов получит импульс . Такой же по величине импульс, направленный в обратную сторону, получит вся масса отрицательных зарядов. Поэтому суммарный импульс равен нулю и, следовательно, тяги не возникнет.

Таким образом, для электрического разгона плазмы необходимо как-то разделить разноименные заряды, чтобы разогнать заряды одного знака, в то время как заряды другого знака выведены из зоны действия ускоряющего поля. Однако эффективно разделить заряды крайне сложно! Этому препятствуют мощные кулоновские силы притяжения, возникающие между разноименно заряженными сгустками плазмы и немедленно восстанавливающие электрическое равновесие. Применяемые в существующих плазменных двигателях методы разделения положительных ионов с электронами используют электростатическое или магнитное поле. В первом случае двигатель традиционно называется ионным, а во втором — плазменным .

Функциональная схема «классического» ионного двигателя»:


1 - подвод рабочего тела; 2 - ионизатор; 3 - пучок ионов; 4 - фокусирующий электрод; 5 - ускоряющий электрод; 6 - блокирующий электрод; 7 - нейтрализатор; 8 - основной источник энергии; 9 - вспомогательный источник энергии. В сравнительно узком интервале между сетчатыми анодом 4 и катодом 5 происходит разгон положительных ионов газа (ксенон, аргон, водород и т.д.), являющегося рабочим телом двигателя. При этом свободные электроны, образующиеся в процессе ионизации, притягиваются к аноду, после чего выводятся в истекающую наружу струю положительно заряженного газа, для его нейтрализации. Катод 6 блокирует притягивание к аноду электронов, покидающих нейтрализатор 7. Анодом является не только электрод 4, но и вся внешняя оболочка камеры, в которой происходит ионизация газа. Анод имеет наибольший потенциал ~1 000 В, в то время как потенциал катода 5 составляет ~100 В, а у катода 6 он еще ниже.

Скорость струи газа, ускорившейся в промежутке между сетками 4 и 5, может доходить до 200 км/cек. Однако тяга ионного двигателя ничтожно мала, в лучшем случая достигая ~ 0.1 ньютона. Это прямо связано с проблемой разделения ионов и электронов. Которая в этом, как и во всех других плазменных двигателях решается крайне неэффективно. Оптимистически предположим, что тягу ионного двигателя с удельным импульсом 200 км/cек удалось довести до 1 ньютона (100 грамм). Тогда корабль со стартовой массой около 15 000 тонн, из которых 14 900 т приходится на рабочее тело (газ), сумеет разогнаться до 1 000 км/сек (по формуле Циолковского . Время разгона выражается формулой , где — полученный кораблем импульс и - сила тяги. В данном случае имеем = 100 000 кг ⋅ 1 000 000 м/сек / 1 Н = 100 млрд. секунд, что составляет примерно 3 200 лет! И это — только нижняя оценка, а фактическое время разгона будет значительно больше вследствие того, что в числитель дроби нужно добавить также импульс, который получило рабочее тело до того, как прошло через двигатель и вылетело из сопла.

Мощность такого двигателя равна = 200 000 Ватт. Реально работающие образцы имеют на порядок меньше. Чтобы сократить время разгона до крейсерской скорости , т.е., увеличить тягу, следует повысить потребляемую электрическую мощность и, соответственно, габариты двигателя. Предположим, что таким образом мы увеличили тягу в 1 000 раз и сократили время разгона до разумных 3.2 года. Неплохо для скорости км/cек, хотя до Альфы Центавра пришлось бы лететь еще 1 300 лет. Однако потребляемая мощность составит сотни мегаватт, что соответствует мощности энергоблока средней АЭС. Это означает, что не существует разумных источников энергии для космических ионных двигателей с тягой хотя бы в десятки килограмм.

Еще в 60-х годах А.И. Морозов предложил свой концепт плазменного двигателя, который был успешно испытан в 70-х. Здесь заряды разделяются радиальным магнитным полем, которое прикладывается в зоне разгона положительных ионов продольным электрическим полем. Значительно более легкие электроны, под действием сил Лоренца, спирально навиваются на силовые линии магнитного поля и как бы «выдергиваются» магнитным полем из плазмы. При этом массивные ионы по инерции проскакивают магнитное поле, ускоряясь электрическим в продольном направлении. Механизм нейтрализации работает также, как в ионном двигателе. Данная схема, имея перед ним определенные преимущества, не позволяет добиться существенно большей тяги при сравнимой мощности. Магнитный метод разделения зарядов далек от эффективного решения проблемы и не позволяет создавать плазменные двигатели, которые могли бы быть использованы для межзвездных путешествий.

Чтобы убедиться в этом предположим, что 1 грамм ионов удалось разделить с электронами и последние скопились на выходе из сопла, навиваясь на силовые линии поперечного магнитного поля с индукцией Тс. Тогда этот избыточный отрицательный заряд составит примерно -95 000 Кл. Легко проверить, что соответствующие «избыточные» ионы с общей массой 1 г за несколько фемтосекунд разгонятся до ~10 000 км/сек. При этом электроны избыточного заряда не приобретут равного импульса навстречу ионам, что нивелировало бы реактивный эффект, т.к. за магнитное поле завернет эти электроны на круговые траектории с радиусами порядка 1 метр. Таким образом, для придачи аппарату тягового импульса 10 000 кг ⋅ м / сек = 0.001 кг ⋅ 10 000 000 м/cек придется в объеме нескольких кубометров создать сверхмощное магнитное поле порядка 10 000 Тесла. Такие экстремальные поля создаются только взрывомагнитными генераторами А.Д. Сахарова и их современными вариациями, причем они существуют лишь микросекунды и в объемах, измеряемых кубическими дециметрами. При этом энергия магнитного поля будет иметь порядок 10 ТераДжоулей. С учетом того, что кумулятивные генераторы способны преобразовать до 20 – 30 % энергии химического взрыва, для придания космическому аппарату тягового импульса ~10 000 кг м / сек пришлось бы эффективно утилизировать энергию ядерного взрыва мощностью ~10 Кт.

При массе корабля в 100 т потребуется миллион таких импульсов, чтобы увеличить его скорость всего на 100 км/cек. И то лишь при условии, что ядерные заряды не пришлось везти на борту и они были заблаговременно размещены в космосе на участке разгона. Но миллион ядерных бомб - это несколько тысяч тонн плутония, которого за весь период существования ядерного оружия было произведено немногим более 300 тонн. Таким образом, имея лишь плазменным мотор с магнитным разделением зарядов, о полете к звездам лучше забыть.

Что делать с плазмой?

По-видимому, проблема эффективного разделения зарядов в плазменных двигателях принципиально неразрешима. Существуют передовые проекты плазменных двигателей с мощностью 5 МВт и удельным импульсом 1 000 км/cек, но их тяга была бы равна 5 000 000 Вт / 1 000 000 м/сек = 5 Н, поэтому проблема сокращения времени разгона остается непреодолимой. Не говоря уже о том, что в космосе трудно добыть мегаватты потребляемой электрической мощности.

Понимая эти проблемы, разработчики плазменных моторов ищут другие подходы. Заметный энтузиазм вызывает новый концепт VASIMR, который в лаборатории показывает лучшие среди плазменных движков результаты: удельный импульс 50 км/cек, тяга 6 ньютонов и КПД 60 — 70 % (тест VX-200). Строго говоря VASIMR даже не является плазменным двигателем, потому что он генерирует высокотемпературную плазму, которая разгоняется в сопле Лаваля — за счет газодинамических эффектов и без электричества.

Через трубку 1 под давлением подается газ, который сначала разогревается и слегка ионизируется микроволновым излучением от 3. Затем поток плазмы, изолированный от стенок магнитным полем катушек 4, дополнительно разогревается антенной 5, которая излучает радиоволны на циклотронной частоте (это частота винтового вращения электрона вокруг силовой линии продольного магнитного поля) . Такой резонансный нагрев повышает температуру плазмы до миллионов градусов, после чего она истекает в магнитное сопло Лаваля 6. Последнее предохраняет стенки от контакта с горячей плазмой и преобразовывает энергию теплового движения ионов в энергию поступательного движения газовой струи. В сущности VASIMR позволяет получить очень горячую, высоко ионизированную плазму посредством микроволнового нагрева. Ускорение плазмы происходит вполне аналогично тому, как ускоряется газовая струя на выходе из обычного ракетного двигателя. Сжиганием химического топлива такую температуру плазмы получить нельзя, но за счет ядерного взрыва это сделать можно . Результаты VASIMR демонстрируют некоторый прогресс, но они по-прежнему бесконечно далеки от потребностей межзвездных экспедиций и явно не имеют перспектив развития в этом направлении. Что касается удельного импульса, то VASIMR является шагом назад.

Ист очник: http://spaceflight.nasa.gov/shuttle/support/researching/aspl/images/vasimr.jpg

Есть еще один, сравнительно новый концепт плазменного двигателя — MPD thruster, с которым связывают большие надежды. Идея заключается в следующем. Создается такой плазменный разряд между анодом и катодом, чтобы соответствующий электрический ток индуцировал кольцевое магнитное поле . Силой Лоренца поле действует на движущиеся заряды тока , отклоняя часть из них в продольном направлении. Так возникает истекающий «вправо» сгусток плазмы, который создает тяговый толчок. Двигатель работает в импульсном режиме, т.к. необходимы короткие паузы между разрядам для скапливания зарядов на электродах.

MPD — thruster не нуждается в разделении разноименных зарядов, потому что в разрядном токе они движутся во встречных направлениях и, соответственно, силы Лоренца имеют одинаковые направления. Теоретически этот концепт имеет выдающиеся показатели на фоне других плазменных моторов, потому что может развивать килограммы тяги. Однако магнитное поле в принципе не способно разгонять электрические заряды, потому что сила Лоренца действует перпендикулярно скорости заряда и, стало быть, не меняет его кинетическую энергию. MPD — thruster лишь отклоняет направление движения зарядов так, что плазма вылетает наружу в продольном направлении. Но для того, чтобы ток между анодом и катодом был достаточно плотным для создания тяги, придется затратить много электрической энергии. Во всяком случае, потребляемая электрическая мощность не уступает мощности плазменной струи. При удельном импульсе ~1 000 км/сек и тяге в 100 кг потребляемая мощность составит сотни мегаватт, что практически невозможно генерировать в космосе. Но даже при таких, возможных пока лишь теоретически показателях MPD — thruster-а, оснащенный им корабль с нетто-массой 100 т разгонится до 10 000 км/сек за 317 лет (!) при нереальной стартовой массе 2 200 000 тонн. Кроме того, невозможно вообразить себе расход миллионов тонн газа в двигателе, пропускающем через него мощные электрические разряды. Очевидно, что никакие электроды не выдержат таких тепловых и химических нагрузо к.

Принципиальная Схема MPD — thruster,

До сих пор практически все космические аппараты оснащались ракетными маршевыми двигателями на химическом топливе. По всей вероятности, для первых полетов на Марс будут использованы ракеты такого же типа. Но возможности двигателей на химическом горючем значительно ограничены энергетикой окислительно-восстановительных реакций. Все современные ракеты в перерасчете на единицу израсходованного горючего создают не слишком большую тягу. Поэтому в дальний полет, к примеру, к внешним планетам Солнечной системы, сегодня можно отправить лишь относительно легкий аппарат. К тому же траекторию такого корабля прокладывают так, чтобы на пути к месту назначения он разгонялся в гравитационных полях планет или их спутников. Именно поэтому для дальних полетов столь узки стартовые «окна», интервалы времени с благоприятным расположением планет – не в астрологическом смысле, а в соответствии с требованиями небесной механики.
Чтобы корабль смог преодолеть земное притяжение и уйти в странствие к другим мирам, его скорость должна превысить вторую космическую, 11,2 км/с. На практике космические аппараты сперва выводят на околоземную орбиту, а затем уже с нее отправляют в открытый космос. Водородно-кислородный двигатель способен увеличить орбитальную скорость корабля не больше, чем на десять километров в секунду, двигатель на ином химическом топливе – еще меньше. Такие скорости достаточны даже для полета к границам Солнечной системы, хотя и по очень протяженной траектории (и с обязательным использованием планетарного гравитационного ускорения). И хотя корабль с традиционным двигателем сможет достичь самой отдаленной планеты, для этого ему понадобятся долгие годы.

Космические аппараты уже давно оснащают плазменными двигателями. Эта разновидность электрореактивного двигателя вообще не потребляет химического горючего, поскольку обеспечивается энергией от аккумуляторов, радиоизотопных генераторов или солнечных батарей. Основное достоинство плазменного двигателя – долговременное функционирование при относительно небольшом расходе рабочего тела. Однако в нынешнем виде такие двигатели развивают очень слабую тягу, всего несколько граммов. Поэтому они используются для корректировки спутниковых орбит либо для медленного длительного ускорения небольших аппаратов непосредственно в космическом пространстве.
Именно такой мотор (конструкция его разработана калининградским ОКБ «Факел»), построенный французской фирмой Snecma Moteurs, осенью 2003 года вывел с околоземной орбиты европейский зонд SMART-1, который в феврале 2005 года превратился в искусственный спутник Луны. В качестве рабочего тела в этом двигателе была использована ксеноновая плазма. Разогнанные в электрическом и магнитном полях ионы ксенона выбрасывались в пространство и создавали реактивную тягу. Двигатель PPS-1350 проработал в космосе приблизительно 5000 часов при тяге в 7 г, истратив за это время 80 кг ксенона. В будущем ЕКА предполагает оснастить двигателями этого типа автоматическую станцию BepiColombo, предназначенную для полета к Меркурию, солнечный зонд Solar Orbiter и космический детектор гравитационных волн LISA (Laser Inter-ferometer Space Antenna).
По сравнению с химическими конкурентами удельный импульс плазменных двигателей выглядит просто роскошно. У PPS-1350 этот показатель равен 1640 с, у английского двигателя UK-10, корректирующего орбиты геостационарных спутников связи, почти вдвое больше – около 3100 с. Расход рабочего тела плазменного мотора очень мал, создаваемое им ускорение невелико, и поэтому набор скорости происходит медленно. Однако даже и при таких скромных возможностях плазменный двигатель способен увести корабль с околоземной орбиты и мало-помалу обеспечить ему прирост скорости гораздо больший, чем 10 км/с, но вот времени на это требуется просто прорва. SMART-1 на своем ксеноновом моторчике добирался от Земли до Луны почти полтора года, поскольку двигался не «напрямик», а по раскручивающейся спирали.
Тем не менее дело не совсем безнадежно. Если б можно было построить двигатель с таким же расходом рабочего тела, как у химических ракет, но, по крайней мере, с вдвое большим удельным импульсом, ситуация бы значительно улучшилась. Такой мотор увеличил бы орбитальную скорость космического аппарата не на 10 км/с, а на 20 км/с и даже больше. Корабль с подобными двигателями преодолел бы расстояние от Земли до Сатурна не за семь лет, как зонд «Кассини», а всего за три года. К счастью, эта задача становится разрешимой, если вместо химических или электрических «разгонщиков» использовать ядерные ракетные двигатели (ЯРД). Они способны обеспечить вполне приемлемые параметры тяги и достаточно высокий удельный импульс, обусловленный огромной скоростью истечения рабочего тела. Очень важно, что для создания ЯРД вовсе не обязательны футуристические технические решения, вполне может хватить уже существующих технологий.
Идея ЯРД проста до глупости, как говорил инженер Гарин о своем гиперболоиде. Источником энергии служит ядерная установка, в которой идут реакции деления, синтеза или даже аннигиляции материи и антиматерии. Выделяемая реактором энергия непосредственно или через промежуточные этапы передается рабочему телу, которое с большой скоростью выбрасывается из ракетных сопел. Конечно, это лишь принципиальная схема. Все прочее – уже конкретные технические решения.

Если оставить за кадром аннигиляцию и прочие полуфантастические идеи, то на сегодня просматриваются две реальные возможности исполнения ЯРД. Одна из них – охлаждение реактора летучим веществом, лучше всего жидким водородом, который после испарения будет уходить через сопла и создавать реактивную тягу. Такую конструкцию принято называть тепловой ядерной ракетой, TNR (Thermal Nuclear Rocket). При использовании реактора на уране или плутонии удельный импульс TNR должен составить от 800 до 1100 секунд. Другая возможность – оснащение корабля небольшой атомной электростанцией (ЯЭУ – ядерная энергоустановка), которая вырабатывает ток для питания электрореактивного двигателя. Удельный импульс этой системы можно довести до 5000 с. В качестве силовой установки можно использовать и компактный термоядерный реактор, но его в самом лучшем случае создут лет через 50.
Писатели-фантасты и популяризаторы науки заговорили об атомных ракетах еще в 30-е годы ХХ века. В качестве практически достижимой цели ЯРД первым предложил Станислав Улам. Американец польского происхождения, выпускник Львовского политехнического института, Улам был исключительно сильным математиком (он придумал метод Монте-Карло) и физиком-расчетчиком (вместе с Эдвардом Теллером разработал теоретические основы конструкции водородной бомбы). В 1944 году Улам и его лос-аламосский коллега Фредерик де Хоффман впервые просчитали возможности применения ЯРД для космических полетов. Через 11 лет Улам и Корнелиус Эверетт в секретной докладной записке предложили разгонять космические корабли с помощью маломощных ядерных взрывов. Энергия взрыва расходовалась на испарение диска из твердого вещества, расположенного между кормой корабля и ядерным зарядом. Возникающий поток плазмы должен был бы отражаться от кормового экрана и толкать корабль вперед.
Идея Улама и Эверетта легла в основу проекта Orion, над которым в 1958 году начала работать калифорнийская корпорация General Atomics, до этого занимавшаяся только коммерческими ядерными реакторами. Под эту задачу выделил деньги (впрочем, не слишком большие) и Пентагон. До атомных взрывов дело не дошло, испытывались лишь различные модели дисков и экранов. Поначалу участники проекта были исполнены такого оптимизма, что всерьез надеялись запустить атомный корабль к Сатурну не позже 1970 года. Любопытно, что среди них был один из создателей квантовой электродинамики, знаменитый физик-теоретик Фримен Дайсон. Но в начале 1960-х министр обороны Роберт Макнамара пришел к выводу, что в военном плане эта идея бесперспективна. А в 1963-м СССР, США и Великобритания договорились о запрете всех ядерных взрывов, за исключением подземных. В результате проект Orion вступил в противоречие с международным правом и год спустя тихо скончался. Обошелся он в целом не так уж и дорого – всего в $11 млн.
В техническом плане Orion можно считать пульсирующим TNR, вынесенным за пределы космического аппарата. В другом любопытном проекте – Helios – предполагалось детонировать атомные заряды не вне, а внутри корабля, в заполненной водой сферической камере из термостойкого материала. Образовавшийся при взрыве пар должен был выбрасываться через сопла и разгонять ракету. Но дальше всего в США зашли начатые в 1956 году работы по проекту NERVA (Nuclear Engine for Rocket Vehicle Application), цели которых много раз изменялись. В конце концов было решено построить два пилотируемых корабля с ЯРД, которые в начале 1980-х доставили бы 12 американских астронавтов на Марс и возвратили их назад на Землю. В ходе реализации этого проекта с разной степенью успеха были опробованы модели экспериментальных ядерных реакторов Kivi, Phoebus, PEWEE и NF-1. В 1968 году состоялись стендовые испытания прототипа будущего ракетного мотора XE Prime мощностью 1100 МВт, и уже шло дело к изготовлению образца для летных испытаний. Однако в 1972 году программу закрыли, сочтя ее чересчур дорогой и практически ненужной ни в научном, ни в политическом плане.
В последней четверти XX века NASA больше не занималось разработкой ЯРД. Министерство обороны США еще некоторое время сохраняло опытно-конструкторскую программу SNAP (Space Nuclear Thermal Propulsion), но в 1992-м ее финансирование полностью прекратили. Около десяти лет назад небольшая фирма Plus Ultra Technologies обнародовала проект компактного ЯРД Mitee, который в техническом плане был прямым наследником программы SNAP. Она предложила начинять цилиндрические матрицы высокоактивными расщепляющимися материалами, ураном-233 и америцием-242, и прокачивать сквозь эти трубки жидкий водород. Вычисления показали, что испаряющийся газ, разогретый до 3000–35000С, будет вылетать из сопел с огромной скоростью. Предполагалось, что ракета Delta или Atlas выведет космический аппарат на 800-км орбиту, после чего можно будет запустить ЯРД и лететь по назначению – например, к Плутону. Конструкторы утверждали, что такой ЯРД можно построить за 6–7 лет всего за $1 млрд. и что удельный импульс наиболее продвинутого варианта двигателя составит 1600 с. Но поскольку NASA не проявило достаточного интереса, этот проект существует лишь на бумаге.

NASA вернулось к идее ЯРД в 2003 году. Новый проект назвали Prometheus. На первой стадии его осуществления должны быть получены экспертные оценки возможности создания компактного реактора для питания электроракетных двигателей нового поколения. В пару ему предстоит разработать ионный двигатель Heracles с тягой 60 г при удельном импульсе 7000 с, с ресурсом не меньше, чем 7–10 лет. Связка таких двигателей сможет разгонять исследовательские зонды весом в несколько тонн до 80–90 км/с.
Не так давно сотрудники Лаборатории элементарных частиц университета Пенсильвании предложили использовать для ЯРД термоядерный реактор, в котором процесс синтеза гелия запускается с помощью антивещества! Топливом служит плазма, состоящая из ядер дейтерия и гелия-3 – легкого радиоактивного изотопа гелия. При слиянии таких ядер рождаются протоны и альфа-частицы, которые обладают вполне солидной суммарной кинетической энергией, равной 18,3 МэВ. Для запуска термоядерного синтеза плазму необходимо сжать и нагреть, чтобы выполнить так называемое условие Лоусона. В реакторе ITER эта задача решена с помощью сверхмощных магнитных полей, для создания которых требуется громоздкое оборудование и огромное количество энергии. Тем не менее реакцию можно зажечь и в небольшой камере, насытив дейтериево-гелиевую плазму антипротонами. При их аннигиляции должны рождаться ударные волны, которые и дожмут плазму до лоусоновского критерия. Антипротоны предполагается хранить в электромагнитной ловушке и закачивать в реактор по мере необходимости. Расчетные характеристики двигателя таковы: ресурс – 22 года, удельный импульс – 61 000 секунд, финальная скорость разгона космического зонда – около 1000 км/с, дальность полета – более 1500 астрономических единиц! К этим фантастическим цифрам остается добавить, пожалуй, только одну: разумный срок перевода этой идеи в металл – не раньше 2050 года.

Плазменные двигатели для России


«Метеор-10», выведенный 29 декабря 1971 года на условно-синхронную орбиту (что позволяло проходить над одними и теми же точками земной поверхности через определенные интервалы времени) был самым обычным метеоспутником. Но только на первый взгляд: на его борту кроме обычной системы ориентации стояли еще два экспериментальных двигателя. Один из них, носящий имя греческого бога западного ветра – «Зефир», проработал всего около часа и дальнейшего развития не получил. А вот второй, названный в честь повелителя ветров – «Эол-1», разработанный группой сотрудников ИАЭ (Института атомной энергии) под руководством Алексея Ивановича Морозова и изготовленный калининградским ОКБ «Факел», положил начало целому космическому направлению – плазменным двигателям.
История плазменных двигателей началась в 1950 году, когда выпускника физфака МГУ Алексея Морозова партком распределил преподавать механику и электротехнику в техникуме заводского поселка Людиново на юго-востоке Калужской области. Причина проста: отец Морозова был репрессирован и никто не принимал во внимание ни его специализацию (квантовая теория поля), ни неоднократные просьбы его научного руководителя – декана физфака Арсения Александровича Соколова – оставить его на кафедре. Преподавателей физики в те годы довольно часто просили выступать с лекциями об атомной энергии, и Морозов не стал исключением. В один из дней 1953 года он возвращался в Людиново с подобной лекции в деревне Черный поток. «Незадолго до этого я прочитал книжку Гудмана об основах ядерной энергетики. Там была схема ядерной ракеты – газ проходил сквозь активную зону и разогревался. Меня поразило, насколько неэффективна эта конструкция – с одной стороны, атомная энергия, а с другой – это ведь просто тепловая машина! – вспоминает Алексей Иванович. – И пока я шел 12 км по шпалам до Людиново, я вспомнил эксперименты с силой Ампера и катушкой Томсона, которые я показывал студентам в училище, и мне пришла в голову идея – почему бы не разгонять рабочее тело магнитным полем?» Теоретические выкладки показывали, что это вполне возможно, и Морозов решил провести эксперимент. Изготовив из асбоцемента «кирпичик», он просверлил в нем крест-накрест два отверстия. В одно он с разных сторон вставил два угольных стержня от батареек, а сверху и снизу бруска расположил два полюса мощного электромагнита. В обычном состоянии плазма, образующаяся в процессе горения дуги, с легким шипением вылетала с обеих сторон второго отверстия, но стоило включить электромагнит – и поток стал бить в одну сторону со страшным ревом.

В 1955 году Морозов написал статью «О возможности создания плазменных электрореактивных двигателей», но его научный руководитель, прочитав ее, дал хороший совет: «Такую статью сразу же засекретят. Лучше изменить название на что-нибудь более нейтральное». В результате в ЖЭТФ (Журнал экспериментальной и теоретической физики) статья вышла под названием «Об ускорении плазмы магнитным полем». Рецензировал ее глава отдела плазменных исследований ИАЭ Лев Арцимович. Теория, изложенная в статье Морозова, позднее нашла свое отражение в статье самого Арцимовича о рельсотроне (только у Морозова магнитное поле было постоянное, а у Арцимовича – электродинамическое). Публикация вызвала среди специалистов большой резонанс, ее даже дважды обсуждали на заседании Американского физического общества.
В 1955 году Морозов защитил диссертацию, а в 1957-м его пригласили на работу в ИАЭ. К концу 1950-х успехи СССР в космосе вдохновили конструкторов замахнуться на несколько крупномасштабных космических проектов. Планировался даже полет к Марсу, и поэтому 2 июля 1959 года Лев Арцимович созвал сотрудников на совещание. Темой обсуждения была возможность построения двигателей для марсианского корабля. Арцимович предложил для такой системы следующие характеристики: тяга около 10 кгс, скорость истечения 100 км/с при мощности двигателя 10 МВт. Сотрудники ИАЭ предложили несколько проектов: плазменный импульсный двигатель (А.М. Андрианов), магнитно-плазменный аналог сопла Лаваля (А.И. Морозов) и двигатель на основе однощелевого источника ионов, практически такого же, какой применялся для электромагнитного разделения изотопов (Павел Матвеевич Морозов, однофамилец Алексея Ивановича).
Кстати, все эти проекты в том или ином виде позднее были реализованы. Плазменно-эрозионный (вариант импульсного) двигатель Андрианова значительно меньшей мощности был установлен на один из спутников и выведен в космос в 1964 году, а ионный двигатель П.М. Морозова под именем «Зефир» (тоже маломощный) стоял на том самом спутнике «Метеор-10». Эксперименты с магнитным аналогом сопла Лаваля с центральным телом (сами разработчики называли его «коаксиал») велись с 1960 года, но схема оказалась сложной, и построен он был лишь в 1980 году совместными усилиями ИАЭ, Харьковского физико-технического института, ТРИНИТИ и Института физики Белоруссии. Мощность этого монстра составила 10 ГВт!
Однако эти проекты не подходили для марсианской программы по одной простой причине: у конструкторов тогда не было источников питания подходящей мощности. Эта проблема актуальна и сейчас: максимум, на который можно рассчитывать, это десятки киловатт. Нужно было переходить к мелкому масштабу. Георгий Гродзовский (ЦАГИ) одним из первых стал конструировать маломощные электроракетные двигатели у нас в стране. Начиная с 1959 года его ионные двигатели испытывались в космосе (правда, не на спутниках, а на баллистических ракетах). В 1957 году М.С. Иоффе и Е.Е. Юшманов начали исследования магнитной (так называемой пробочной) ловушки для плазмы. Для заполнения ее горячей плазмой (10 млн. градусов) они использовали ускорение ионов в скрещенных электрических и магнитных полях. Эта работа послужила фундаментом для создания ряда плазменных двигателей. В 1962 году Алексей Морозов предложил свою конструкцию плазменного двигателя малой мощности, названного СПД (стационарный плазменный двигатель). Принципиально важной особенностью СПД было то, что величина магнитного поля нарастала к срезу канала двигателя – это обеспечивало создание в плазме объемного электрического поля. Вся идея двигателя была построена именно на существовании такого поля.

«Впервые на возможность существования объемных электрических полей в плазме указал в 1910 году Таунсенд, однако на протяжении 50 лет попытки создать такое поле были неудачны. В то время считали, что, поскольку плазма является проводником – поле в ней создать нельзя. На самом деле создать объемное электрическое поле в плазме без магнитного поля действительно нельзя – за счет свободных электронов происходит ее экранирование. Но в присутствии магнитного поля, которое влияет на движение электронов, объемные электрические поля в плазме могут существовать. Группа А.И. Морозова начала заниматься СПД в 1962 году. Почти пять лет двигатель существовал в лабораторном варианте – в 1967-м модель еще была оснащена водяным охлаждением. Пора было приступать к летно-космическим испытаниям, но на этом этапе разработчики столкнулись с неожиданной проблемой. Конструкторы космических аппаратов категорически отказывались ставить на борт что-либо электрическое! Директор ИАЭ академик Александров несколько раз встречался с конструкторами различных космических аппаратов, и ему удалось наконец договориться с Иосифьяном, главным конструктором спутников серии «Метеор».
Однако проблемы на этом не закончились. В 1969 году Иосифьян выдал группе разработчиков техническое задание, согласно которому они должны были сделать не сам двигатель, а всю установку, включая систему питания, подачи ксенона и т.п. При этом надо было уложиться в очень жесткие рамки: тяга 2 гс, КПД 30–40%, потребляемая мощность 400 Вт, масса 15 кг, ресурс 100 часов. И все это нужно было сделать за 5 месяцев! Группа Морозова работала буквально днем и ночью, но успела. Изготовление же двигательной установки было поручено калининградскому ОКБ «Факел», директором которого был в то время талантливый конструктор Роальд Снарский. Через несколько дней после запуска «Метеора» начались эксперименты с двигателями. «Эол-1» был установлен на спутник таким образом, что ось его тяги не проходила через центр масс аппарата. При включении двигателя возникал некоторый крутящий момент, который можно было компенсировать системой ориентации, при этом она служила еще и измерителем тяги «Эола».
За экспериментом внимательно следили не только создатели двигателя, но и скептики, коих было достаточно. «Эол-1» должен был проработать всего несколько минут, потом автоматически выключиться (конструкторы боялись, что струя плазмы заблокирует радиосигнал). Двигатель отработал свое и выключился. После проведения радиоконтроля орбиты оказалось, что результаты в точности соответствуют лабораторным данным. Правда, скептики не угомонились и выдвинули гипотезу, что изменение орбиты вызвано обычным истечением газа через открытый клапан. Но это предположение не подтвердилось: после второго включения по команде с Земли двигатель проработал еще 170 часов, подняв орбиту «Метеора-10» на 15 км. ОКБ «Факел» отлично справилось со своей задачей: ресурс был превышен почти вдвое.

В начале 1980-х «Факел» начинает серийно производить двигатели СПД-70 – потомки «Эолов». Первый спутник с этим двигателем, «Гейзер №1», был запущен в 1982-м, а в 1994-м новой моделью СПД-100 оснастили спутник связи «Галс-1». Однако, хотя сообщение об успешном испытании плазменного двигателя «Эол» в 1974 году было совершенно открыто опубликовано в журнале «Космические исследования», зарубежные конструкторы считали СПД лишь интересной теоретической разработкой. Поэтому демонстрация представителям NASA и JPL в 1991 году работающих двигателей «Факела» и сообщение, что подобными оснащены серийные спутники, вызвала у них настоящий шок (американцы в основном пошли по пути разработки ионных двигателей). Неудивительно, что «Факел» сейчас считается в мире ведущим производителем электроракетных плазменных двигателей. «На каждом третьем российском спутнике стоит наш двигатель, а три из пяти крупнейших западных производителей космических аппаратов покупают у нас СПД, – рассказал директор и генеральный конструктор ОКБ «Факел» Вячеслав Михайлович Мурашко. – Ими, например, оснащены спутники MBSat-1, Intelsat-X-02, Inmarsat-4F1». Посылая свой спутник SMART-1 к Луне, Европейское космическое агентство выбрало для него в качестве двигателей плазменные PPS-1350, совместную разработку французской компании Snecma Moteurs, ОКБ «Факел» и МИРЭА.
Что же ожидает нас в ближайшем будущем? В 1980-х годах группа в МИРЭА разработала двигатель следующего поколения, СПД Атон. Расходимость плазменного пучка в СПД-100 составляет +/– 45 градусов, КПД – 50%, а соответствующие характеристики СПД Атон +/–15 градусов и 65%! Он пока не востребован, как и другой наш двигатель, двухступенчатый СПД Мах с измененной геометрией поля – конструкторы пока обходятся более простыми СПД-100. Дальний космос требует двигателей с масштабами 10-100 кВт или даже МВт. Подобные разработки уже есть – в 1976 году в ИАЭ сделали двигатель мощностью в 30 кВт, да и «Факел» в конце 1980-х разработал СПД-290 мощностью 25 кВт для космического буксира «Геркулес». В любом случае теория таких двигателей построена, поэтому в рамках классической схемы СПД вполне реально довести мощность до 300 кВт.А вот дальше, возможно, придется перейти к другим конструкциям. Например, к двухлинзовому ускорителю на водороде, разработанному в ИАЭ в конце 1970-х. Эта машина имела мощность 5 МВт и скорость истечения 1000 км/с. В любом случае на межпланетных кораблях будут стоять плазменные двигатели.

Просмотров