Корреляционно-регрессионный анализ в Excel: инструкция выполнения. Основы линейной регрессии Регрессионный анализ используют если

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Количество уволившихся

Зарплата

30000 рублей

35000 рублей

40000 рублей

45000 рублей

50000 рублей

55000 рублей

60000 рублей

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а 0 + а 1 x 1 +…+а k x k , где х i — влияющие переменные, a i — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата<0,5, то такой анализа регрессии в Excel нельзя считать резонным.

Анализ коэффициентов

Число 64,1428 показывает, каким будет значение Y, если все переменные xi в рассматриваемой нами модели обнулятся. Иными словами можно утверждать, что на значение анализируемого параметра оказывают влияние и другие факторы, не описанные в конкретной модели.

Следующий коэффициент -0,16285, расположенный в ячейке B18, показывает весомость влияния переменной Х на Y. Это значит, что среднемесячная зарплата сотрудников в пределах рассматриваемой модели влияет на число уволившихся с весом -0,16285, т. е. степень ее влияния совсем небольшая. Знак «-» указывает на то, что коэффициент имеет отрицательное значение. Это очевидно, так как всем известно, что чем больше зарплата на предприятии, тем меньше людей выражают желание расторгнуть трудовой договор или увольняется.

Множественная регрессия

Под таким термином понимается уравнение связи с несколькими независимыми переменными вида:

y=f(x 1 +x 2 +…x m) + ε, где y — это результативный признак (зависимая переменная), а x 1 , x 2 , …x m — это признаки-факторы (независимые переменные).

Оценка параметров

Для множественной регрессии (МР) ее осуществляют, используя метод наименьших квадратов (МНК). Для линейных уравнений вида Y = a + b 1 x 1 +…+b m x m + ε строим систему нормальных уравнений (см. ниже)

Чтобы понять принцип метода, рассмотрим двухфакторный случай. Тогда имеем ситуацию, описываемую формулой

Отсюда получаем:

где σ — это дисперсия соответствующего признака, отраженного в индексе.

МНК применим к уравнению МР в стандартизируемом масштабе. В таком случае получаем уравнение:

в котором t y , t x 1, … t xm — стандартизируемые переменные, для которых средние значения равны 0; β i — стандартизированные коэффициенты регрессии, а среднеквадратическое отклонение — 1.

Обратите внимание, что все β i в данном случае заданы, как нормируемые и централизируемые, поэтому их сравнение между собой считается корректным и допустимым. Кроме того, принято осуществлять отсев факторов, отбрасывая те из них, у которых наименьшие значения βi.

Задача с использованием уравнения линейной регрессии

Предположим, имеется таблица динамики цены конкретного товара N в течение последних 8 месяцев. Необходимо принять решение о целесообразности приобретения его партии по цене 1850 руб./т.

номер месяца

название месяца

цена товара N

1750 рублей за тонну

1755 рублей за тонну

1767 рублей за тонну

1760 рублей за тонну

1770 рублей за тонну

1790 рублей за тонну

1810 рублей за тонну

1840 рублей за тонну

Для решения этой задачи в табличном процессоре «Эксель» требуется задействовать уже известный по представленному выше примеру инструмент «Анализ данных». Далее выбирают раздел «Регрессия» и задают параметры. Нужно помнить, что в поле «Входной интервал Y» должен вводиться диапазон значений для зависимой переменной (в данном случае цены на товар в конкретные месяцы года), а в «Входной интервал X» — для независимой (номер месяца). Подтверждаем действия нажатием «Ok». На новом листе (если так было указано) получаем данные для регрессии.

Строим по ним линейное уравнение вида y=ax+b, где в качестве параметров a и b выступают коэффициенты строки с наименованием номера месяца и коэффициенты и строки «Y-пересечение» из листа с результатами регрессионного анализа. Таким образом, линейное уравнение регрессии (УР) для задачи 3 записывается в виде:

Цена на товар N = 11,714* номер месяца + 1727,54.

или в алгебраических обозначениях

y = 11,714 x + 1727,54

Анализ результатов

Чтобы решить, адекватно ли полученное уравнения линейной регрессии, используются коэффициенты множественной корреляции (КМК) и детерминации, а также критерий Фишера и критерий Стьюдента. В таблице «Эксель» с результатами регрессии они выступают под названиями множественный R, R-квадрат, F-статистика и t-статистика соответственно.

КМК R дает возможность оценить тесноту вероятностной связи между независимой и зависимой переменными. Ее высокое значение свидетельствует о достаточно сильной связи между переменными «Номер месяца» и «Цена товара N в рублях за 1 тонну». Однако, характер этой связи остается неизвестным.

Квадрат коэффициента детерминации R 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

(критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > t кр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO - 0,031*VK +0,405*VD +0,691*VZP - 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 - 0,031*x3 +0,405*x4 +0,691*x5 - 265,844

Данные для АО «MMM» представлены в таблице:

Подставив их в уравнение регрессии, получают цифру в 64,72 млн американских долларов. Это значит, что акции АО «MMM» не стоит приобретать, так как их стоимость в 70 млн американских долларов достаточно завышена.

Как видим, использование табличного процессора «Эксель» и уравнения регрессии позволило принять обоснованное решение относительно целесообразности вполне конкретной сделки.

Теперь вы знаете, что такое регрессия. Примеры в Excel, рассмотренные выше, помогут вам в решение практических задач из области эконометрики.

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х 1, х 2,…, х к отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.

Функция f(х 1, х 2,…, х к) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. -regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией? и оценкой y регрессии. Пусть результативный показатель у связан с аргументом х соотношением:

где - е случайная величина, имеющая нормальный закон распределения, причем Ме = 0 и D е = у 2 . Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х 1.5 .

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+е, и представленной на рис. 1

Рисунок 1 - Взаимное расположение истиной f (х) и теоретической? модели регрессии

Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида? = в 0 +в 1 x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b 0 +b 1 x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х 1,5 , теоретической аппроксимирующей функции регрессии? = в 0 +в 1 x .

Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью? объяснялась бы только ограниченностью выборки.

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений,? = f(х i), где, х i - значение вектора аргументов в i-м наблюдении: ?(y i - f(х i) 2 > min. Получаемая регрессия называется среднеквадратической.

Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем,? = f(х i), среднеабсолютную медианную регрессию? |y i - f(х i)| >min.

Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных х j = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения х j.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у, являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией у 2 .

В общем линейная модель регрессионного анализа имеет вид:

Y = Уk j=0 вj цj (x1 , x2 . . .. ,xk )+Э

где ц j - некоторая функция его переменных - x 1 , x 2 . . .. ,x k , Э - случайная величина с нулевым математическим ожиданием и дисперсией у 2 .

В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.

Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии

у=М(у/х)=в 0 + в 1 х)

где М(у1х) - условное математическое ожидание случайной величины у при заданном х; в 0 и в 1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.

Предположим, что для оценки параметров в 0 и в 1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:

y j = в 0 + в 1 x+е j .

где е j .- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией у 2 , т. е. М е j . = 0;

D е j .= у 2 для всех i = 1, 2,..., n.

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров в 0 и в 1 следует брать такие значения выборочных характеристик b 0 и b 1 , которые минимизируют сумму квадратов отклонений значений результативного признака у i от условного математического ожидания? i

Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.

При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):

* инновационная деятельность предприятия;

* планирование ассортимента производимой продукции;

* формирование ценовой политики;

* взаимоотношения с общественностью;

* система сбыта;

* система стимулирования работников.

На основе системы сравнений по факторам были построены квадратные матрицы смежности, в которых вычислялись значения относительных приоритетов по каждому фактору: инновационная деятельность предприятия, планирование ассортимента производимой продукции, формирование ценовой политики, реклама, взаимоотношения с общественностью, система сбыта, система стимулирования работников.

Оценки приоритетов по фактору «взаимоотношения с общественностью» получены в результате анкетирования специалистов предприятия. Приняты следующие обозначения: > (лучше), > (лучше или одинаково), = (одинаково), < (хуже или одинаково), <

Далее решалась задача комплексной оценки уровня маркетинга предприятия. При расчете показателя была определена значимость (вес) рассмотренных частных признаков и решалась задача линейного свертывания частных показателей. Обработка данных производилась по специально разработанным программам.

Далее рассчитывается комплексная оценка уровня маркетинга предприятия -- коэффициент маркетинга, который вносится в таблице 1. Кроме того, в названую таблицу включены показатели, характеризующие предприятие в целом. Данные в таблице будут использованы для проведения регрессионного анализа. Результативным признаком является прибыль. В качестве факторных признаков наряду с коэффициентом маркетинга использованы следующие показатели: объем валовой продукции, стоимость основных фондов, численность работников, коэффициент специализации.

Таблица 1 - Исходные данные для регрессионного анализа


По данным таблицы и на основе факторов с наиболее существенными значениями коэффициентов корреляции были построены регрессионные функции зависимости прибыли от факторов.

Уравнение регрессии в нашем случае примет вид:

О количественном влиянии рассмотренных выше факторов на величину прибыли говорят коэффициенты уравнения регрессии. Они показывают, на сколько тысяч рублей изменяется ее величина при изменении факторного признака на одну единицу. Как следует из уравнения, увеличение коэффициента комплекса маркетинга на одну единицу дает прирост прибыли на 1547,7 тыс. руб. Это говорит о том, что в совершенствовании маркетинговой деятельности кроется огромный потенциал улучшения экономических показателей предприятий.

При исследовании эффективности маркетинга наиболее интересным и самым важным факторным признаком является фактор Х5 -- коэффициент маркетинга. В соответствии с теорией статистики достоинство имеющегося уравнения множественной регрессии является возможность оценивать изолированное влияние каждого фактора, в том числе фактора маркетинга.

Результаты проведенного регрессионного анализа имеют и более широкое применение, чем для расчета параметров уравнения. Критерий отнесения (КЭф,) предприятий к относительно лучшим или относительно худшим основан на относительном показателе результата:

где Y фактi - фактическая величина i-го предприятия, тыс. руб.;

Y расчi -величина прибыли i-го предприятия, полученная расчетным путем по уравнению регрессии

В терминах решаемой задачи величина носит название «коэффициент эффективности». Деятельность предприятия можно признать эффективной в тех случаях, когда величина коэффициента больше единицы. Это означает, что фактическая прибыль больше прибыли, усредненной по выборке.

Фактические и расчетные значения прибыли представлены в табл. 2.

Таблица 2 - Анализ результативного признака в регрессионной модели

Анализ таблицы показывает, что в нашем случае деятельность предприятий 3, 5, 7, 9, 12, 14, 15, 17 за рассматриваемый период можно признать успешной.

Регрессионный анализ исследует зависимость определенной величины от другой величины или нескольких других величин. Регрессионный анализ применяется преимущественно в среднесрочном прогнозировании, а также в долгосрочном прогнозировании. Средне- и долгосрочный периоды дают возможность установления изменений в среде бизнеса и учета влияний этих изменений на исследуемый показатель.

Для осуществления регрессионного анализа необходимо:

    наличие ежегодных данных по исследуемым показателям,

    наличие одноразовых прогнозов, т.е. таких прогнозов, которые не поправляются с поступлением новых данных.

Регрессионный анализ обычно проводится для объектов, имеющих сложную, многофакторную природу, таких как, объем инвестиций, прибыль, объемы продаж и др.

При нормативном методе прогнозирования определя­ются пути и сроки достижения возможных состояний явле­ния, принимаемых в качестве цели. Речь идет о прогнози­ровании достижения желательных состояний явления на основе заранее заданных норм, идеалов, стимулов и целей. Такой прогноз отвечает на вопрос: какими путями можно достичь желаемого? Нормативный метод чаще применяется для программ­ных или целевых прогнозов. Используются как количествен­ное выражение норматива, так и определенная шкала воз­можностей оценочной функции

В случае использования количественного выражения, например физиологических и рациональных норм потреб­ления отдельных продовольственных и непродовольствен­ных товаров, разработанных специалистами для различных групп населения, можно определить уровень потребления этих товаров на годы, предшествующие достижению ука­занной нормы. Такие расчеты называют интерполяцией. Интерполяция - это способ вычисления показателей, недо­стающих в динамическом ряду явления, на основе установ­ленной взаимосвязи. Принимая фактическое значение по­казателя и значение его нормативов за крайние члены ди­намического ряда, можно определить величины значений внутри этого ряда. Поэтому интерполяцию считают норма­тивным методом. Ранее приведенная формула (4), исполь­зуемая в экстраполяции, может применяться в интерполя­ции, где у п будет характеризовать уже не фактические данные, а норматив показателя.

В случае использования в нормативном методе шкалы (поля, спектра) возможностей оценочной функции, т. е. фун­кции распределения предпочтительности, указывают при­мерно следующую градацию: нежелательно - менее же­лательно - более желательно - наиболее желательно - оптимально (норматив).

Нормативный метод прогнозирования помогает выра­ботать рекомендации по повышению уровня объективнос­ти, следовательно, эффективности решений.

Моделирование , пожалуй, самый сложный метод про­гнозирования. Математическое моделирование означает опи­сание экономического явления посредством математичес­ких формул, уравнений и неравенств. Математической ап­парат должен достаточно точно отражать прогнозный фон, хотя полностью отразить всю глубину и сложность прогно­зируемого объекта довольно трудно. Термин "модель" об­разован от латинского слова modelus, что означает "мера". Поэтому моделирование правильнее было бы считать не методом прогнозирования, а методом изучения аналогично­го явления на модели.

В широком смысле моделями называются заместители объекта исследования, находящиеся с ним в таком сход­стве, которое позволяет получить новое знание об объек­те. Модель следует рассматривать как математическое опи­сание объекта. В этом случае модель определяется как яв­ление (предмет, установка), которое находиться в некотором соответствии с изучаемым объектом и может его замещать в процессе исследования, представляя информацию об объекте.

При более узком понимании модели она рассматрива­ется как объект прогнозирования, ее исследование позво­ляет получить информацию о возможных состояниях объек­та в будущем и путях достижения этих состояний. В этом случае целью прогнозной модели является получение ин­формации не об объекте вообще, а только о его будущих состояниях. Тогда при построении модели бывает невозмож­но провести прямую проверку ее соответствия объекту, так как модель представляет собой только его будущее состояние, а сам объект в настоящее время может отсут­ствовать или иметь иное существование.

Модели могут быть материальными и идеальными.

В экономике используются идеальные модели. Наиболее совершенной идеальной моделью количественного описания социально-экономического (экономического) явления является математическая модель, использующая числа, формулы, уравнения, алгоритмы или графическое представление. С помощью экономических моделей определяют:

    зависимость между различными экономическими по­казателями;

    различного рода ограничения, накладываемые на по­казатели;

    критерии, позволяющие оптимизировать процесс.

Содержательное описание объекта может быть пред­ставлено в виде его формализованной схемы, которая ука­зывает, какие параметры и исходную информацию нужно собрать, чтобы вычислить искомые величины. Математичес­кая модель в отличие от формализованной схемы содержит конкретные числовые данные, характеризующие объект Разработка математической модели во многом зависит от представления прогнозиста о сущности моделируемого про­цесса. На основе своих представлений он выдвигает рабочую гипотезу, с помощью которой создается аналитическая за­пись модели в виде формул, уравнений и неравенств. В ре­зультате решения системы уравнений получают конкретные параметры функции, которыми описывается изменение ис­комых переменных величин во времени.

Порядок и последовательность работы как элемент организации прогнозирования определяется в зависимости от применяемого метода прогнозирования. Обычно эта ра­бота выполняется в несколько этапов.

1-й этап - прогнозная ретроспекция, т. е. установле­ние объекта прогнозирования и прогнозного фона. Работа на первом этапе выполняется в такой последовательности:

    формирование описания объекта в прошлом, что включает предпрогнозный анализ объекта, оценку его параметров, их значимости и взаимных связей,

    определение и оценка источников информации, по­рядка и организации работы с ними, сбор и разме­щение ретроспективной информации;

    постановка задач исследования.

Выполняя задачи прогнозной ретроспекции, прогнозис­ты исследуют историю развития объекта и прогнозного фона с целью получения их систематизированного описания.

2-й этап - прогнозный диагноз, в ходе которого ис­следуется систематизированное описание объекта прогно­зирования и прогнозного фона с целью выявления тенден­ций их развития и выбора моделей и методов прогнозиро­вания. Работа выполняется в такой последовательности:

    разработка модели объекта прогноза, в том числе формализованное описание объекта, проверка сте­пени адекватности модели объекту;

    выбор методов прогнозирования (основного и вспо­могательных), разработка алгоритма и рабочих про­грамм.

3-й этап - протекция, т. е. процесс обширной разра­ботки прогноза, в том числе: 1) расчет прогнозируемых па­раметров на заданный период упреждения; 2) синтез от­дельных составляющих прогноза.

4-й этап - оценка прогноза, в том числе его верифи­кация, т. е. определение степени достоверности, точности и обоснованности.

В ходе проспекции и оценки на основании предыдущих этапов решаются задачи прогноза и его оценка.

Указанная этапность является примерной и зависит от основного метода прогнозирования.

Результаты прогноза оформляются в виде справки, док­лада или иного материала и представляются заказчику.

В прогнозировании может быть указана величина отклонения прогноза от действительного состояния объекта, которая называется ошибкой прогноза, которая рассчитывается по формуле:

;
;
. (9.3)

Источники ошибок в прогнозировании

Основными источниками могут быть:

1. Простое перенесение (экстраполяция) данных из прошлого в будущее (например, отсутствие у фирмы иных вариантов прогноза, кроме 10% роста продаж).

2. Невозможность точно определить вероятность события и его воздействия на исследуемый объект.

3. Непредвиденные трудности (разрушительные события), влияющие на осуществление плана, например, внезапное увольнение начальника отдела сбыта.

В целом точность прогнозирования повышается по мере накопления опыта прогнозирования и отработки его методов.

1. Впервые термин «регрессия» был введен основателем биометрии Ф. Гальтоном (XIX в.), идеи которого были развиты его последователем К. Пирсоном.

Регрессионный анализ - метод статистической обработки данных, позволяющий измерить связь между одной или несколькими причинами (факторными признаками) и следствием (результативным признаком).

Признак - это основная отличительная черта, особенность изучаемого явления или процесса.

Результативный признак - исследуемый показатель.

Факторный признак - показатель, влияющий на значение результативного признака.

Целью регрессионного анализа является оценка функциональной зависимости среднего значения результативного признака (у ) от факторных (х 1 , х 2 , …, х n ), выражаемой в виде уравнения регрессии

у = f (x 1 , х 2 , …, х n ). (6.1)

Различают два вида регрессии: парную и множественную.

Парная (простая) регрессия - уравнение вида:

у = f (x ). (6.2)

Результативный признак при парной регрессии рассматривается как функция от одного аргумента, т.е. одного факторного признака.

Регрессионный анализ включает в себя следующие этапы:

· определение типа функции;

· определение коэффициентов регрессии;

· расчет теоретических значений результативного признака;

· проверку статистической значимости коэффициентов регрессии;

· проверку статистической значимости уравнения регрессии.

Множественная регрессия - уравнение вида:

у = f (x 1 , х 2 , …, х n ). (6.3)

Результативный признак рассматривается как функция от нескольких аргументов, т.е. много факторных признаков.

2. Для того чтобы правильно определить тип функции нужно на основании теоретических данных найти направление связи.

По направлению связи регрессия делится на:

· прямую регрессию, возникающую при условии, что с увеличением или уменьшением независимой величины «х» значения зависимой величины «у» также соответственно увеличиваются или уменьшаются;

· обратную регрессию, возникающую при условии, что с увеличением или уменьшением независимой величины «х» зависимая величина «у» соответственно уменьшается или увеличивается.

Для характеристики связей используют следующие виды уравнений парной регрессии:

· у=a+bx линейное;

· y=e ax + b – экспоненциальное;

· y=a+b/x – гиперболическое;

· y=a+b 1 x+b 2 x 2 – параболическое;

· y=ab x – показательное и др.

где a, b 1 , b 2 - коэффициенты (параметры) уравнения; у - результативный признак; х - факторный признак.

3. Построение уравнения регрессии сводится к оценке его коэффициентов (параметров), для этого используют метод наименьших квадратов (МНК).

Метод наименьших квадратов позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака «у »от теоретических «у х » минимальна, то есть

Параметры уравнения регрессии у=a+bх по методу наименьших квадратов оцениваются с помощью формул:

где а – свободный коэффициент, b - коэффициент регрессии, показывает на сколько изменится результативный признак «y » при изменении факторного признака «x » на единицу измерения.

4. Для оценки статистической значимости коэффициентов регрессии используется -критерий Стьюдента.

Схема проверки значимости коэффициентов регрессии:

1) Н 0: a =0, b =0 - коэффициенты регрессии незначимо отличаются от нуля.

Н 1: a≠ 0, b≠ 0 - коэффициенты регрессии значимо отличаются от нуля.

2) р =0,05 – уровень значимости.

где m b , m a - случайные ошибки:

; . (6.7)

4) t табл (р; f ),

где f =n-k- 1 - число степеней свободы (табличное значение), n - число наблюдений, k х».

5) Если , то отклоняется, т.е. коэффициент значимый.

Если , то принимается, т.е. коэффициент незначимый.

5. Для проверки правильности построенного уравнения регрессии применяется критерий Фишера.

Схема проверки значимости уравнения регрессии:

1) Н 0: уравнение регрессии незначимо.

Н 1: уравнение регрессии значимо.

2) р =0,05 – уровень значимости.

3) , (6.8)

где - число наблюдений; k - число параметров в уравнении при переменных «х» ; у - фактическое значение результативного признака; y x - теоретическое значение результативного признака; - коэффициент парной кореляции.

4) F табл (р; f 1 ; f 2 ),

где f 1 =k, f 2 =n-k-1- число степеней свободы (табличные значения).

5) Если F расч >F табл , то уравнение регрессии подобрано верно и может применяться на практике.

Если F расч , то уравнение регрессии подобрано неверно.

6. Основным показателем, отражающим меру качества регрессионного анализа, является коэффициент детерминации (R 2).

Коэффициент детерминации показывает, какая доля зависимой переменной «у » учтена в анализе и вызвана влиянием на нее факторов, включенных в анализ.

Коэффициент детерминации (R 2) принимает значения в промежутке . Уравнение регрессии является качественным, если R 2 ≥0,8.

Коэффициент детерминации равен квадрату коэффициента корреляции, т.е.

Пример 6.1. По следующим данным построить и проанализировать уравнение регрессии:

Решение.

1) Вычислить коэффициент корреляции: . Связь между признаками прямая и умеренная.

2) Построить уравнение парной линейной регрессии.

2.1) Составить расчетную таблицу.

Х у Ху х 2 у х (у-у х) 2
55,89 47,54 65,70
45,07 15,42 222,83
54,85 34,19 8,11
51,36 5,55 11,27
42,28 45,16 13,84
47,69 1,71 44,77
45,86 9,87 192,05
Сумма 159,45 558,55
Среднее 77519,6 22,78 79,79 2990,6

,

Уравнение парной линейной регрессии: у х =25,17+0,087х.

3) Найти теоретические значения «у x » путем подстановки в уравнение регрессии фактических значений «х ».

4) Построить графики фактических «у» и теоретических значений «у х » результативного признака (рисунок 6.1):r xy =0,47) и небольшим числом наблюдений.

7) Вычислить коэффициент детерминации: R 2 =(0,47) 2 =0,22. Построенное уравнение некачественное.

Т.к. вычисления при проведении регрессионного анализа достаточно объемные, рекомендуется пользоваться специальными программами («Statistica 10», SPSS и др.).

На рисунке 6.2 приведена таблица с результатами регрессионного анализа, проведенного с помощью программы «Statistica 10».

Рисунок 6.2. Результаты регрессионного анализа, проведенного с помощью программы «Statistica 10»

5. Литература:

1. Гмурман В.Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов / В.Е. Гмурман. - М.: Высшая школа, 2003. - 479 с.

2. Койчубеков Б.К. Биостатистика: Учебное пособие. - Алматы: Эверо, 2014. - 154 с.

3. Лобоцкая Н.Л. Высшая математика. / Н.Л. Лобоцкая, Ю.В. Морозов, А.А. Дунаев. - Мн.: Высшая школа, 1987. - 319 с.

4. Медик В.А., Токмачев М.С., Фишман Б.Б. Статистика в медицине и биологии: Руководство. В 2-х томах / Под ред. Ю.М. Комарова. Т. 1. Теоретическая статистика. - М.: Медицина, 2000. - 412 с.

5. Применение методов статистического анализа для изучения общественного здоровья и здравоохранения: учебное пособие / ред. Кучеренко В.З. - 4-е изд., перераб. и доп. – М.: ГЭОТАР - Медиа, 2011. - 256 с.

Регрессионный анализ - это метод установления аналитического выражения стохастической зависимости между исследуемыми признаками. Уравнение регрессии показывает, как в среднем изменяется у при изменении любого из x i , и имеет вид:

где у - зависимая переменная (она всегда одна);

х i - независимые переменные (факторы) (их может быть несколько).

Если независимая переменная одна - это простой регрессионный анализ. Если же их несколько (п 2), то такой анализ называется многофакторным.

В ходе регрессионного анализа решаются две основные задачи:

    построение уравнения регрессии, т.е. нахождение вида зависимости между результатным показателем и независимыми факторами x 1 , x 2 , …, x n .

    оценка значимости полученного уравнения, т.е. определение того, насколько выбранные факторные признаки объясняют вариацию признака у.

Применяется регрессионный анализ главным образом для планирования, а также для разработки нормативной базы.

В отличие от корреляционного анализа, который только отвечает на вопрос, существует ли связь между анализируемыми признаками, регрессионный анализ дает и ее формализованное выражение. Кроме того, если корреляционный анализ изучает любую взаимосвязь факторов, то регрессионный - одностороннюю зависимость, т.е. связь, показывающую, каким образом изменение факторных признаков влияет на признак результативный.

Регрессионный анализ - один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, x l ,x 2 ,...,x n ; y должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида:

Построение уравнения регрессии осуществляется, как правило, методом наименьших квадратов, суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.:

где т - число наблюдений;

j = a + b 1 x 1 j + b 2 x 2 j + ... + b n х n j - расчетное значение результатного фактора.

Коэффициенты регрессии рекомендуется определять с помощью аналитических пакетов для персонального компьютера или специального финансового калькулятора. В наиболее простом случае коэффициенты регрессии однофакторного линейного уравнения регрессии вида y = а + bх можно найти по формулам:

Кластерный анализ

Кластерный анализ - один из методов многомерного анализа, предназначенный для группировки (кластеризации) совокупности, элементы которой характеризуются многими признаками. Значения каждого из признаков служат координатами каждой единицы изучаемой совокупности в многомерном пространстве признаков. Каждое наблюдение, характеризующееся значениями нескольких показателей, можно представить как точку в пространстве этих показателей, значения которых рассматриваются как координаты в многомерном пространстве. Расстояние между точками р и q с k координатами определяется как:

Основным критерием кластеризации является то, что различия между кластерами должны быть более существенны, чем между наблюдениями, отнесенными к одному кластеру, т.е. в многомерном пространстве должно соблюдаться неравенство:

где r 1, 2 - расстояние между кластерами 1 и 2.

Так же как и процедуры регрессионного анализа, процедура кластеризации достаточно трудоемка, ее целесообразно выполнять на компьютере.

Просмотров