Измерение lc. Компактный многофункциональный прибор - измеритель L, C, ESR, пробник-генератор сигналов. Принципиальная схема измерителя емкости и индукции

Хотя у меня и имеется в наличии профессиональный автоматический мост Е7-8, но уж слишком он громозкий и тяжёлый - 35 кГ!

Поэтому, мне и захотелось попробовать свои силы в изготовлении несложного измерителя LC на микроконтроллере. Была найдена самая простая (но с претензиями на хорошее качество работы) схема на устаревшем, но достаточно доступном микроконтроллере 16F84A, LM311N и LCD индикаторе типа 1601.

Вариант печатной платы 90х65 мм этого LC измерителя от YL2GL (джампер J3 на плату не устанавливал (в нём нет надобности) - подсветка LCD индикатора 1601, если она у него есть, включена постоянно!):

Вид некоторых деталей, под которые разработана печатная плата:

Один из вариантов печатной платы LC измерителя выполненный методом ЛУТ:

Четыре версии файла прошивки в *.hex формате для программирования PICа 16F84A помещёны в Каталог файлов сайта (рекомендуют третью версию прошивки, как версию с автокалибровкой прибора при включении):

Программирование PIC 16F84A можно осуществить при помощи простейшего JDM программатора, подключаемого к порту COM1 компьютера (нужно помнить, что JDM программатор хорошо работает с более старыми компьютерами, а вот с новейшими - двухъядерными и всеми видами лаптопов, нотебуков, может не работать, так как у них принудительно ограничен ток на контактах COM порта. Поэтому, ищите компьютер, который будет работать с JDM программатором без проблем, или делайте программатор по другой схеме - с внешним питанием):

и программы ICprog.

С учётом покупки LCD индикатора 1601 на:

Хотелось бы отметить по схеме прибора, что нужно обратить внимание на наличие или отсутствие установленного на плате LCD индикатора 1601 резистора 10...12 Ом в цепи подсветки. При отсутствии, его нужно припаять последовательно с подсветкой, в противном случае можно её просто сжечь при установке джампера J3!

Имеется две схемы LC измерителя, отличающиеся схемой включения обмотки низковольтного реле. Во второй схеме обмотка реле через гасящий резистор подключается на землю, а не на +5В:

Прошивки PIC 16F84A приведены под первый вариант схемы, находящийся в начале статьи. Они могут, конечно, работать и с последним вариантом схемы, но перед показаниями значений ёмкости и индуктивности появится знак "-".

После сборки LC метра прибор запускается с первого включения. Для однострочного LCD индикатора 1601 необходимо замкнуть джампер J1. Для двухстрочного, типа 1602 - оставить разомкнутым. Подстроечным резистором 10К нужно отрегулировать контрасность LCD дисплея. Чем ближе движок резистора к "земле", тем выше контрасность дисплея.

После первого включения необходимо проверить частоту генератора на выходе LM311N, замкнув джампер J2, при положении переключателя L/C на С.

Частота на экране LCD должна быть в районе 550 кГц.

Показания на дисплее, при этом, будут без одного нуля - 55000.

Если у вас есть ёмкости с указанным на них 1% разбросом, то можно использовать и их.

Начинать настройку прибора лучше в режиме измерения ёмкости - С.

Нажимаем кнопку SW1 - калибровка.

На экране прибора кратковременно появится надпись Calibrating и показания на экране обнулятся до C=0.0 pF.

Вставляем в гнёзда эталонную ёмкость и если показания прибора отличаются от необходимого значения, то подбираем ёмкость последовательно с контактами низковольтного реле, каждый раз повторяя калибровку прибора.

LC-метр

Радиолюбителю очень часто приходится измерять емкость, реже - индуктивность. Емкость позволяют мерять многие мультиметры, а вот с индуктивностью дела обстоят хуже. Дешевых приборов для этого не существует, а дорогие не всем по карману.

Выходом из этой ситуации может быть очень простой и полезный LC-метр, описанный . Я только дополнил его автоматическим отключением через 1 мин. и индикатором разряда батарейки ниже 7 В, а также отказался от входного переключателя:

Он измеряет емкость от 0,1 пФ до 5 мкФ и индуктивность от 0,1 мкГн до 5 Гн с точностью 2-3 %. Емкости больше 5 мкФ удобно мерять ESR-метром . Эти приборы дополняют друг друга.

Резистор R7 (в исходной схеме из архива) я заменил транзистором КП103Е в режиме стабилизации тока. Так экономится несколько миллиампер потребляемого тока. В этих же целях можно заменить транзистор КТ361 на какой-нибудь p-канальный полевой и избавиться от тока базы и резистора на 5,1к.

Так выглядит готовое устройство:


ИСТОЧНИК: Журнал "Радио" № 7 2004 г.

В практике радиолюбителя измерение параметров используемых радиоэлементов — первый основополагающий шаг в достижении поставленных целей при создании радиотехнического или электронного комплекса. Не зная свойств "элементарных кирпичиков", очень трудно сказать, какими свойствами будет обладать построенный из них дом. В данной статье читателю предложено описание несложного измерительного прибора, который должен быть в лаборатории у каждого радиолюбителя.

Принцип работы предлагаемого LC-метра основан на измерении энергии, накапливаемой в электрическом поле конденсатора и магнитном поле катушки. Впервые применительно к любительской конструкции этот метод был описан в , а в последующие годы с незначительными изменениями широко был использован во многих конструкциях измерителей индуктивности и емкости. Применение в данной конструкции микроконтроллера и ЖКИ индикатора позволило создать простой, малогабаритный, дешевый и удобный в эксплуатации прибор, имеющий достаточно высокую точность измерений. При работе с прибором не нужно манипулировать никакими органами управления, достаточно просто подключить измеряемый элемент и считать показа ния с индикатора.

Технические характеристики

Диапазон измеряемой емкости.............0,1пФ...5мкФ
Диапазон измеряемой индуктивности........0,1 мкГн...5 Гн
Погрешность измеряемой величины, не более, %.........±3
Напряжение питания, В........7,5...9
Ток потребления, мА, не более.........................15
Автоматический выбор диапазона измерений
Программная коррекция нуля
Габариты, мм............140x40x30

Принципиальная схема прибора показана на рис. 1

Сигнал возбуждающего напряжения рямоугольной формы с вывода 6 (РВ1) микроконтроллера DD1 через три нижних по схеме буферных элемента DD2 поступает на измерительную часть устройства. Во время высокого уровня напряжения зарядка измеряемого конденсатора Сх происходит через резистор R9 и диод VD6, а во время низкого — разрядка через R9 и VD5. Средний ток разрядки, пропорциональный величине измеряемой емкости, устройство преобразует с помощью операционного усилителя DA1 в напряжение. Конденсаторы С5 и С7 сглаживают его пульсации. Резистор R14 служит для точной установки нуля ОУ.

При измерении индуктивности во время высокого уровня ток в катушке нарастает до значения, определяемого резистором R10, а во время низкого — ток, создаваемый ЭДС самоиндукции измеряемой катушки, через VD4 и R11 также поступает на вход микросхемы DA1.

Таким образом, при постоянном напряжении питания и частоте сигнала напряжение на выходе ОУ прямопропорционально величинам измеряемых емкости или индуктивности. Но это справедливо только при условии, что зарядка конденсатора выполнена полностью в течение половины периода возбуждающего напряжения и также полностью произошла разрядка в течение другой половины. Аналогично и для катушки индуктивности. Ток в ней должен успевать нарастать до максимального значения и спадать до нуля. Эти условия можно обеспечить соответствующим выбором резисторов R9—R11 и частоты возбуждающего напряжения.

Напряжение, пропорциональное значению параметра измеряемого элемента, с выхода ОУ через фильтр R6C2 подают на встроенный десятиразрядный АЦП микроконтроллера DD1. Конденсатор С1 — фильтр внутреннего источника образцового напряжения АЦП.

Три верхних по схеме элемента DD2, а также VD1, VD2, С4, С11 использованы для формирования напряжения -5 В, необходимого для работы ОУ

Результат измерения прибор отображает на десяти разрядном семисегментном ЖКИ HG1 (КО-4В, серийно выпускает фирма "Телесистемы" в г.Зеленограде). Аналогичный индикатор использован в телефонах "PANAPHONE".

Для повышения точности прибор имеет девять поддиапазонов измерения. Частота возбуждающего напряжения на первом поддиапазоне равна 800 кГц. На такой частоте измеряют конденсаторы с емкостью примерно до 90 пФ и катушки с индуктивностью до 90 мкГн. На каждом последующем поддиапазоне частота снижена в 4 раза, соответственно во столько же раз расширен предел измерения. На девятом поддиапазоне частота равна 12 Гц, что обеспечивает измерение конденсаторов с емкостью до 5 мкФ и катушек с индуктивностью до 5 Гн. Нужный поддиапазон прибор выбирает автоматически, причем после включения питания измерение начинает с девятого поддиапазона. В процессе переключения номер поддиапазона отображен на индикаторе, что позволяет определить, на какой частоте выполняют измерение.

После выбора нужного поддиапазона результат измерения в пФ или мкГн выведен на индикатор. Для удобства считывания десятые доли пФ (мкГн) и единицы мкФ (Гн) отделены пустым знакоместом, а результат округлен до трех значащих цифр.

Светодиод HL1 красного цвета свечения использован в качестве стабистора на 1,5 В для питания индикатора. Кнопка SB1 служит для программной коррекции нуля, что помогает компенсировать емкость и индуктивность клемм и переключателя SA1. Этот переключатель можно исключить, если установить отдельные клеммы для подключения измеряемой индуктивности и емкости, но это менее удобно в эксплуатации. Резистор R7 предназначен для быстрой разрядки конденсаторов С9 и С10 при выключении питания. Без него повторное включение, обеспечивающее корректную работу индикатора, возможно не ранее чем через 10 с, что несколько неудобно при эксплуатации.

Все детали прибора, кроме переключателя SA1, смонтированы на односторонней печатной плате, которая показана на рис. 2 .

Индикатор HG1 и кнопка SB1 установлены со стороны монтажа и выведены на лицевую панель. Длина проводов до переключателя SA1 и входных клемм не должна превышать 2...3 см. Диоды VD3—VD6 — высокочастотные с малым падением напряжения, можно применить Д311, Д18, Д20. Подстроечные резисторы R11, R12, R14 малогабаритные типа СПЗ-19. Замена R11 на проволочный резистор нежелательна, так как приведет к снижению точности измерений. Микросхему 140УД1208 можно заменить на какой-либо другой ОУ, имеющий цепь установки нуля и способный работать от напряжения ±5 В, а К561ЛН2 можно заменить на любую КМОП микросхему серий 1561, 1554, 74НС, 74АС, содержащую шесть инверторов, например, 74НС14. Применение ТТЛ серий 155, 555, 1533 и др. нежелательно. Микроконтроллер ATtinyl 5L фирмы ATMEL аналога не имеет и заменить его на другой тип, например популярный AT90S2313, невозможно без корректировки программы.

Номинал емкостей конденсаторов С4, С5, С11 уменьшать не следует. Переключатель SA1 должен быть малогабаритным и с минимальной емкостью между выводами.

При программировании микроконтроллера все FUSE биты следует оставить по умолчанию: BODLEVEL=0, BODEN=1, SPIEN=0, RSTDISBL=1, CKSEL1 ...0=00. Калибровочный байт нужно записать в младший байт программы по адресу $000F. Это обеспечит точную установку тактовой частоты 1,6 МГц и, соответственно, частоты возбуждающего напряжения для измерительной схемы на первом диапазоне 800 кГц. В экземпляре ATtinyl 5L, имевшемся у автора, калибровочный байт равен $8В Коды прошивки микроконтроллера можно скачать на ftp сервера журнала "Радио" (см. ), или .

Для наладки необходимо подобрать несколько катушек и конденсаторов со значениями параметров в диапазоне измерения прибора и имеющих минимальный допуск отклонения по номиналу. Если есть возможность, их точные значения следует измерить с помощью промышленного измерителя LC. Это будут ваши "образцовые" элементы. Учитывая, что шкала измерителя линейная, в принципе, достаточно одного конденсатора и одной катушки. Но лучше проконтролировать весь диапазон. В качестве образцовых катушек хорошо подходят нормализованные дроссели типов ДМ, ДП.

Настроив прибор в режиме измерения емкости, следует перевести SA1 в нижнее по схеме положение, замкнуть входные гнезда и нажать SB1. После коррекции нуля на вход подключить образцовую катушку и резистором R11 выставить необходимые показания. Цена младшего разряда — 0,1 мкГн. При этом следует обратить внимание, чтобы сопротивление R11 было не менее 800 Ом, в противном случае следует уменьшить сопротивление резистора R10. Если R11 будет больше 1 кОм, R10 надо увеличить, т. е. R10 и R11 должны быть близки по номиналу. Такая настройка обеспечивает примерно одинаковую постоянную времени "зарядки" и "разрядки" катушки и, соответственно, минимальную погрешность измерения.

Погрешность не хуже ±2...3 % при измерении конденсаторов можно обеспечить без труда, а вот при измерении катушек же все обстоит несколько сложнее. Индуктивность катушки во многом зависит от ряда сопутствующих условий — активное сопротивление обмотки, потери в магнитопроводах на вихревые токи, на гистерезис, магнитная проницаемость ферромагнетиков нелинейно зависит от напряженности магнитного поля и др. Катушки при измерении испытывают воздействие различных внешних полей, а все реальные ферромагнетики имеют довольно высокое значение остаточной индукции. Более подробно процессы, происходящие при намагничивании магнитных материалов, описаны в . В результате воздействия всех этих факторов показания прибора при измерении индуктивности некоторых катушек могут не совпасть с показаниями промышленного прибора, измеряющего комплексное сопротивление на фиксированной частоте. Но не спешите ругать этот прибор и его автора. Просто следует учитывать особенности принципа измерения. Для катушек без магнитопровода, для незамкнутых магнитопроводов и для ферромагнитных магнитопроводов с зазором точность измерения вполне удовлетворительна, если активное сопротивление катушки не превышает 20...30 Ом. А это значит, что индуктивность всех катушек и дросселей высокочастотных устройств, трансформаторов для импульсных источников питания и т. п. можно измерять весьма точно.

А вот при измерении индуктивности малогабаритных катушек с большим числом витков из тонкого провода и замкнутым магнитопроводом без зазора (особенно из трансформаторной стали) будет большая погрешность. Но ведь в реальном приборе условия работы катушки могут и не соответствовать тому идеалу, который обеспечен при измерении комплексного сопротивления. Например, индуктивность обмотки одного из трансформаторов в наличии у автора, измеренная промышленным измерителем LC, оказалась около 3 Гн. При подаче постоянного тока подмагничивания всего 5 мА показания стали около 450 мГн, т. е. индуктивность уменьшилась в 7 раз! А в реальных рабочих устройствах ток через катушки почти всегда имеет постоянную составляющую. Описываемый измеритель показал индуктивность обмотки этого трансформатора 1,5 Гн. И еще неизвестно, какая цифра будет ближе к реальным условиям работы.

Все вышесказанное в той или иной степени справедливо для всех без исключения любительских измерителей LC. Просто их авторы скромно об этом умалчивают. Не в последнюю очередь именно по этой причине функция измерения емкости есть во многих моделях недорогих мультиметров, а измерять индуктивность могут только дорогие и сложные профессиональные приборы. В любительских условиях сделать хороший и точный измеритель комплексного сопротивления очень сложно, проще приобрести промышленный, если он действительно нужен. Если это по тем или иным причинам невозможно, думаю, предлагаемая конструкция может послужить неплохим компромиссом с оптимальным соотношением цены, качества и удобства в эксплуатации.

ЛИТЕРАТУРА

  1. Степанов А. Простой LC-метр. — Радио, 1982, ╧ 3, с. 47, 48.
  2. Семенов Б. Силовая электроника. — М.:СОЛОН-Р, 2001.

Этот точный LC метр построен на базе недорогих компонентов, которые очень легко найти в радиомагазинах. Диапазон измерителя LC-метра достаточно широк и подходит для измерения даже очень низких значения емкости и индуктивности.

Печатная плата - рисунок

Индуктивности - диапазоны измерений:

  • 10nH - 1000nH
  • 1uH - 1000uH
  • 1mH - 100mH

Диапазоны измерения емкости:

  • 0.1pF - 1000pF
  • 1nF - 900nF

Большим плюсом устройства является автоматическая калибровка при включении питания, поэтому исключена ошибка в калибровке, что присуще некоторым аналогичным , особенно аналоговых. При необходимости, можно выполнить повторную калибровку в любой момент, нажатием кнопки reset. В обем данный LC метр полностью автоматический. Прошивку МК PIC16F628 .

Компоненты прибора

Слишком точные компоненты являются необязательными, за исключением одного (или более) конденсаторов, которые используются для калибровки измерителя. Два 1000 пФ конденсатора по входу должны быть достаточно хорошего качества. Пенополистирол является более предпочтительным. Избегайте керамических конденсаторы, ведь некоторые из них могут иметь большие потери.

Два конденсатора по 10 мкФ в генераторе должен быть танталовые (у них низкое последовательное сопротивление и индуктивность). Кварцевый резонатор на 4 МГц должен быть строго 4.000 МГц, а не что-то приближенное к этому значению. Каждый 1% ошибки в частоте кварца добавляет 2% ошибок при измерении значения индуктивности. Реле должно обеспечить около 30 мА тока срабатывания. Резистором R5 выставляется контраст ЖК дисплея LC метра. Питается прибор от обычной батарейки Крона, так как дальше напряжение стабилизируется микросхемой 7805 .

Просмотров